Cyclogénèse tropicale - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Trajectoires des cyclones tropicaux de 1985 à 2005

La Cyclogénèse tropicale est le terme technique décrivant le développement des cyclones tropicaux dans l'atmosphère terrestre. Le mécanisme emprunté par ces systèmes pour leur formation est très différent de celui de la cyclogénèse des dépressions des latitudes moyennes. En effet, il est dû à la convection profonde dans un environnement favorable d'une masse d'air homogène. Son cœur est chaud car il est le lieu d'une subsidence d'air sec (l'œil).

En moyenne, on note 86 cyclones tropicaux annuellement à travers le monde, dont 47 atteignent le niveau d'ouragans/typhons et 20 celui de cyclones tropicaux majeurs (niveau 3 de l'échelle de Saffir-Simpson).

Prérequis

Même si la formation de cyclones tropicaux est un vaste sujet de recherche non encore complètement résolu, on peut dire qu'il y a six facteurs prérequis pour leur développement divisée en deux catégories:

Thermodynamique

Dynamique

Thermodynamique

Profondeur de la couche de surface de la mer à 26 °C le 1er octobre 2006

Le moteur des cyclones tropicaux est le relâchement de chaleur latente par des précipitations orageuses. En effet, la vapeur d'eau qui se condense en gouttelettes de nuage relâche une certaine énergie qui sera reprise par la vapeur d'eau lors de la dissipation du nuage. Par contre, l'énergie utilisée pour former les gouttes de pluie, réchauffe l'air des bas niveaux ce qui permet d'entretenir le cycle orageux. Il faut donc que l'air soit très humide dans les bas et moyens niveaux de la troposphère pour fournir assez de "carburant" à la convection profonde pour maintenir le système.

Le "déclencheur" de cette convection est la température de la mer. Normalement, une température océanique de surface de 26,5 °C sur au moins 50 mètres de profondeur est considérée comme un facteur nécessaire pour maintenir la convection profonde. Cette valeur est bien au-dessus de la température moyenne des océans (16.1°C). Cette condition prend pour acquis que l'environnement atmosphérique est autrement normal. Cela veut dire, en saison propice aux cyclones tropicaux, que la température à 500 hPa est autour de -7 °C et que près de la tropopause, à 15 km ou plus d'altitude, elle est d'environ -77 °C.

Ce taux de diminution de température avec l'altitude est très près de celui de l'adiabatique humide et toute parcelle d'air saturé soulevée dans cet environnement aura peu d'Énergie Potentielle de Convection Disponible puisqu'elle suit l'adiatique humide. Pour pouvoir produire des nuages convectifs intenses, il faut donc que la température de la mer soit plus élevée que la normale, que l'air qui s'y trouve soit saturé et que l'air soit relativement plus sec en altitude. Il a été trouvé expérimentalement que lorsque le point de rosée à 500 hPa est de -13.2 °C et que le niveau de convection libre est atteint près du sol avec une température de la mer de 26,5 °C, on obtient une convection soutenue. Une variation de 1 °C du point de rosée à 500 hPa donne une variation équivalente nécessaire de la température de la mer.

Cependant, si l'atmosphère est plus instable parce que la température en altitude est plus froide que la moyenne, cela donne une masse d'air instable à plus faible température de surface. Une cyclogénèse tropicale peut donc se produire avec une température de la surface de la mer plus faible. En fait, il suffit que la variation thermique avec l'altitude de la masse d'air soit plus grande que le gradient thermique adiabatique pour qu'une parcelle d'air à la température de la mer s'élève et donne des orages. De récents exemples de telles situation sont tempête tropicale Delta (2005), l'ouragan Epsilon (2005) et la tempête tropicale Zeta (2005). La température de la mer était bien plus basse que le seuil conventionnel dans ces cas.

Intensité potentielle maximale (MPI en anglais)

Le Dr Kerry Emanuel a créé un modèle mathématique vers 1988 pour calculer le potentiel maximal atteignable par un cyclone tropical selon la température de surface de la mer et le profil de température de l'atmosphère. Ces données peuvent être tirées d'un modèle de prévision numérique du temps, en particulier de ceux spécialisés en développements tropicaux. Les valeurs de cet indice, appelé MPI en anglais, peut être pointé sur des cartes. On retrouve ainsi les zones à potentiel de développement de dépressions tropicales et là où le potentiel est suffisant pour atteindre le niveau de cyclone. Cet indice ne tient pas compte du cisaillement vertical des vents et n'est que purement lié au potentiel thermodynamique.

Dynamique de cyclonisation

La trajectoire des vents (noir) autour d'un dépression, comme l'ouragan Isabel, dans l'hémisphère nord est une balance entre la force de Coriolis (rouge) et celle du gradient de pression (bleu)
Lignes de flux dans les alizés, sur l'océan Atlantique, qui montrent la zone de convergence où toute instabilité peut mener à la formation d'ouragans

Le vent est une balance entre le gradient de pression, qui crée le mouvement de l'air, et la force de Coriolis qui dévie ce mouvement vers la droite (hémisphère nord) ou la gauche (hémisphère sud). Celle-ci est nulle à l'équateur et maximale aux pôles. Pour qu'elle soit suffisante pour induire une déviation des vents qui engendrera une rotation cyclonique, il faut s'éloigner de l'équateur d'au moins 10 degrés de latitude ou à peu près 500 km. La morphologie du terrain peut accentuer la rotation en concentrant par friction le vent vers le centre de basse pression. Les baies et golfes sont en particulier très efficaces (ex. Typhon Vamei qui s'est formé à seulement 1,5 degré de latitude).

Perturbation de surface

Dans une zone où le potentiel thermodynamique est assez important selon le MPI, des orages commenceront à se développer. Le moindre creux de mousson, onde tropicale, front très lâche de surface ou zone de convergence d'humidité dont la configuration des vents donne un tourbillon suffisant, permettra à la convection d'entrer en rotation autour de ce point focal. Sans ce dernier, la convection restera désorganisée et sans lendemains.

Faible cisaillement vertical

Le changement des vents dans avec l'altitude, tant en direction qu'en vitesse, doit être de moins de 10 m/s (36 km/h) entre la surface et la tropopause. En effet, un cisaillement plus intense transporte l'air en ascendance dans les orages, et donc la précipitation, en aval et assèche les niveaux moyens de l'atmosphère. Or la chaleur latente dégagée par les orages doit rester dans le cyclone qui se développe pour y garder l'air chaud et humide afin de perpétuer les conditions à leur continuelle reformation.

D'autre part, dans les cyclones naissants, le développement d'un complexe convectif de méso-échelle dans un environnement fortement cisaillé donnera des rafales descendantes qui couperont l'entrée d'air humide. Donc même si on crée un complexe de convection, il se détruit de lui-même.

Interactions favorables

Quand un creux barométrique ou une dépression en altitude est de même échelle que la perturbation de surface et se trouve à proximité, on retrouve un divergence en altitude qui fait un appel d'air de la surface. Ceci accélère la cyclogénèse. En fait, une dépression est encore mieux car des études ont montré que leur faible cisaillement causent un développement plus rapide du cyclone tropical au prix d'une intensité maximale plus faible des vents et d'une pression centrale plus élevée Ce processus est appelé une initiation baroclinique d'un cyclone tropical. De tels faibles dépressions ou creux d'altitude peuvent également causer des courants descendants canalisés qui aident à l'intensification. En retour, les cyclones qui se renforcent aident à creuser les items d'altitude qui les ont aidés en intensifiant les courant-jets de bas niveau qui les alimentent

Plus rarement, une cyclogénèse de type des latitudes moyennes peut se produire avec le passage d'un fort courant-jet d'altitude au nord-ouest du cyclone tropical en formation. En général, cela se produit lorsque le cyclone est déjà fort éloigné de l'équateur lorsqu'il entre dans le flux général d'ouest en altitude. Il s'agit donc de systèmes tardifs.

Page générée en 0.314 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise