Les Ctenophora ont une symétrie intéressante, nommée symétrie biradiaire, mais ils présentent quelques structures asymétriques, comme les pores anaux, le statocyste ou parfois les rangées de peignes natatoires. A cette symétrie s'ajoute une symétrie bilatérale chez les Tentaculata.
Leur organisation est diploblastique (ils ne possèdent que deux feuillets embryonnaires transparents).
Le feuillet externe, ou ectoderme, donne naissance à l'épiderme externe, constitué de deux couches de cellules, en grande partie recouvert par une couche protectrice de substance visqueuse sécrétée par des cellules glandulaires. L'endoderme (épiderme interne) entoure une cavité qui sert d'estomac, reliée à l'extérieur et à l'ouverture de la bouche par un œsophage long et étroit. Les proies capturées sont prédigérées dans l'œsophage par de puissantes enzymes, puis leur hydrolyse s'achève dans l'estomac. Il n'y a pas de véritable « sortie » de l'estomac, à part deux pores anaux qui, malgré leur nom, ne sont que modérément utilisés pour l'excrétion des déchets indigestibles (principalement rejetés par la bouche).
L'espace situé entre les épidermes externe et interne est occupé par la mésoglée, une couche gélatineuse visqueuse et transparente formée de collagène et de tissu conjonctif. L'important réseau de protéine structurale est maintenu par des cellules particulières ressemblant à des amibes (amibocytes). La mésoglée est parcourue par de petits canaux utilisés pour le transport et le stockage des nutriments. La position de ces canaux varie en fonction des espèces, mais ils se trouvent principalement en dessous des tissus qu'ils desservent.
La mésoglée pourrait aussi jouer un rôle dans la flottabilité de ces animaux.
Les cils vibratiles situés dans les canaux du système digestif pourraient servir à pomper l'eau vers l'intérieur ou l'extérieur de la mésoglée, pour ajuster la pression osmotique interne, par exemple lorsque le cténophore passe d'un milieu strictement marin à de l'eau plus saumâtre côtière.
Les Cténophores ne possèdent pas de système circulatoire différencié, ni d'organe respiratoire, ni de système excréteur. Les échanges gazeux et l'excrétion des déchets du métabolisme comme l'ammoniaque se réalisent au niveau de la surface entière de l'organisme par simple diffusion.
La mésoglée est aussi parcourue par un réseau simple de cellules nerveuses (neurones), sans centre nerveux différencié. Ces neurones sont concentrés autour de la bouche, des tentacules (quand ils existent), des cténidies (rangées de peignes locomoteurs) et du statocyste. Ils sont reliés aux cellules musculaires de la mésoglée et avec la couche de cellules la plus interne de l'épiderme externe. Cette organisation complexe de la mésoglée lui confère, selon certains auteurs, le statut de mésenchyme.
Il s'agit d'un système spécialisé servant aux cténophores d'organe d'équilibration et qui contrôle aussi leurs mouvements. Il se trouve à l'extrémité opposée de celle de l'ouverture de la bouche. Il est constitué d'un ensemble formé d'une centaine de cellules calcifiées appelées statolithes, reposant en équilibre sur leurs flagelles sinueux et répartis en quatre groupes horizontaux. Lorsque les conditions extérieures poussent le cténophore à changer de position, le statolithe exerce davantage de pression sur un des quatre groupes de flagelles et moins sur les trois autres. Cette information sensorielle est transmise à l'ectoderme via le réseau de neurones. Le cténophore ajustera donc l'activité de ses rangées de peignes locomoteurs en réponse à cette stimulation.
Ces peignes sont généralement disposés en 8 rangées allongées dans le sens longitudinal, appelées cténidies. Chaque peigne est formé d'une rangée de plusieurs centaines de cils vibratiles, fusionnés à la base, formant ainsi une sorte de palette natatoire de 2 à 5 mm de long. En soulevant ces peignes successivement, le cténophore les utilise comme des rames qui, quand les huit cténidies sont convenablement synchronisées, lui permettent de se propulser dans l'eau. Chacun des quatre groupes de cellules flagellées du statocyte contrôle un quart de l'animal, soit 2 rangées de peignes. Le rythme de battement et la synchronisation des peignes se propage automatiquement, de façon mécanique, sans intervention des cellules nerveuses. La position dans l'espace du cténophore (géotaxis) provoque l'action de la gravité sur le statocyste, augmentant ou diminuant la fréquence des battements. Le cténophore peut aussi modifier le rythme de battements des rangées de peignes pour nager vers le haut ou le bas de la colonne d'eau. La position dans l'espace est déterminée par le cténophore grâce au statocyste et au réseau nerveux, mais aussi grâce à la détermination de la quantité de lumière ambiante.
De nombreuses espèces de cténophores possèdent deux tentacules implantés vers le milieu du corps, opposés par rapport à l'axe de symétrie. Ils sont utilisés pour capturer les proies ; chaque tentacule peut se rétracter entièrement par enroulement dans une poche située à sa base, la gaine tentaculaire. Ils ont une croissance continue par la base, qui compense l'usure de l'extrémité. Ces tentacules portent des ramifications appelées tentilles qui, contrairement aux tentacules des Cnidaires, ne contiennent pas de cellules urticantes (cnidocytes), mais des cellules collantes (colloblastes). Ces cellules se déploient brutalement quand une proie entre en contact avec un tentacule : le filament cytoplasmique en spirale qui constitue leur base se détend alors, projetant la partie apicale collante de la cellule vers la proie, qui sera alors capturée. Contrairement aux cnidocytes, les colloblastes ne sont pas détruits après usage : grâce à l'élasticité du filament cytoplasmique, ils peuvent, une fois débarrassés de la proie, reprendre leur position initiale.