Cristal photonique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Bracelet monté d'une opale, cristal photonique naturel.

Les cristaux photoniques sont des structures périodiques de matériaux diélectriques ou métallo-diélectriques modifiant la propagation des ondes électromagnétiques de la même manière qu'un potentiel périodique dans un cristal semi-conducteur affecte le déplacement des électrons en créant des bandes d'énergie autorisées et interdites. Les longueurs d'ondes pouvant se propager dans le cristal se nomment des modes, et les groupes de modes autorisés s'appellent des bandes. L'absence de modes propagatifs des ondes électromagnétiques (EM) dans de telles structures, dans une plage de fréquences ou de longueurs d'onde, est alors qualifiée de bande interdite (band gap en anglais).

Généralités

Description

Schéma montrant le principe des arrangements pour des cristaux photoniques unidimensionnels(1D), bidimensionnels (2D) et tridimensionnels (3D). Les parties blanches ont un indice de réfraction εA et les parties grises un indice de réfraction εB.

Les cristaux photoniques sont des nano-structures périodiques diélectriques ou métallo-diélectriques qui affectent la propagation des ondes électromagnétiques. En micro-ondes ces cristaux photoniques sont parfois appelés matériaux à bande électromagnétique interdite. Les cristaux photoniques existent sous une multitude de formes. Il existe néanmoins trois principales catégories : unidimensionnel, bidimensionnel et tridimensionnel. Ces dimensions représentent le nombre de directions dans lesquelles il y a une périodicité de la constante diélectrique.

  • La forme la plus simple de cristal photonique est une structure périodique à une dimension composée d'un empilement multicouche également appelé « miroir de Bragg ». On l'assimile à un cristal photonique unidimensionnel, car les propriétés spécifiques aux cristal photonique n'existent que dans une seule dimension.
  • Les cristaux photoniques bidimensionnels sont principalement des plaques, c'est-à-dire que l'épaisseur est du même ordre de grandeur que la période cristallographique du cristal photonique. La périodicité de ces plaques est généralement créée en « gravant » une structure de trous dans une plaque dont le matériau possède un indice de réfraction élevé. Les équations de Maxwell prévoient en effet que plus l'indice de réfraction est élevé, plus grande sera la bande interdite.

Histoire

C'est Lord Rayleigh en 1887 qui a le premier montré que l'on pouvait ainsi produire un gap ou bande interdite, même si le terme de « cristal photonique » ne fut introduit qu'en 1987 avec de la parution de deux articles majeurs de Eli Yablonovitch et Sajeev John. Ils y prévirent la possibilité de produire des structures à deux ou trois dimensions qui posséderaient des bandes interdites. Avant 1987, les cristaux photoniques unidimensionnels, qui sont des structures périodiques composées d'un empilement multicouche similaires à un « miroir de Bragg », étaient principalement étudiés. Comme Lord Rayleigh l'a montré en 1887, ces structures possédaient une bande interdite unidimensionnelle, et avaient une grande réflectivité. Aujourd'hui ces structures ont de nombreuses applications, aussi bien pour des surfaces réfléchissantes, pour l'amélioration de rendement de LEDs, ou pour leurs propriétés de très grande réflectivité dans les cavités optiques de certains lasers (ex : VCSEL). Une étude théorique détaillée de structures optiques unidimensionnelles a été réalisée par V.P. Bykov en 1972, qui a été le premier à examiner l'effet de bandes interdites sur l'émission spontanée provenant d'atomes et de molécules intégrées à la structure. Bykov fit aussi des hypothèses sur l'emploi de structures bi- ou tridimensionnelles. Ce concept de cristal photonique tridimensionnel fut ensuite examiné par Ohtaka en 1979, qui développa un protocole pour le calcul de structures de bandes. Toutefois, ses publications ne prirent de la valeur qu'à partir de la parution des articles de Yablonovitch et John. Leurs deux articles portaient sur les structures optiques périodiques à plusieurs dimensions. La motivation principale de Yablonovitch était d'appréhender la densité d'états photoniques, par analogie à la densité d'états électroniques, dans le but de contrôler l'émission spontanée de matériaux intégrés aux cristaux photoniques. John, quant à lui, voulait utiliser les cristaux photoniques pour modifier la localisation et le contrôle de la lumière.

Après 1987, le nombre de publications concernant les cristaux photoniques commença à croître exponentiellement. Cependant, à cause de la difficulté de fabrication de ces structures pour qu'elles soient effectives dans le spectre visible, les premières études étaient soit théoriques, soit dans les micro-ondes, car les cristaux pouvaient être fabriqués plus facilement à la grandeur du centimètre. En 1991, Yablonovitch conçoit le premier cristal photonique tridimensionnel possédant une bande interdite dans les micro-ondes.

En 1996, Thomas Krauss fit la première démonstration d'un cristal photonique bidimensionnel dans le spectre du visible. Cela ouvrit la voie à la fabrication de cristaux photoniques par les méthodes utilisées dans le secteur des semi-conducteurs. Aujourd'hui, ces techniques permettent d'utiliser des cristaux photoniques en plaques (en anglais photonic crystal slabs), qui consistent en des cristaux photoniques bidimensionnels gravés dans des plaques de semi-conducteurs. La réflexion totale interne enferme la lumière dans la plaque et permet d'exploiter les propriétés du cristal. Actuellement, beaucoup de recherches se font sur ces plaques de cristaux photoniques dans le but de pouvoir les utiliser dans des circuits intégrés, et ainsi améliorer le traitement du signal optique à la fois dans et entre les puces.

Alors que les précédentes techniques doivent encore se développer pour avoir des applications commerciales, les cristaux photoniques bidimensionnels sont déjà utilisés sous la forme de fibres optiques à cristaux photoniques. Ces fibres ont été développées initialement par Philip Russel en 1998, et sont conçues pour améliorer les propriétés des fibres optiques ordinaires.

L'étude de cristaux photoniques tridimensionnels progresse plus doucement à cause de la difficulté de fabrication. Il n'y a pas de technique utilisée dans les semi-conducteurs qui serait applicable pour leur élaboration. Toutefois, des essais ont été effectués pour adapter les mêmes techniques et certains ont été concluants. Par exemple, une structure en « pile de bois » a été réalisée avec une technique de couche-par-couche. Un autre axe de recherche a porté sur la construction de cristaux photoniques tridimensionnels par auto-assemblage, consistant en l'agglutination d'une solution de nano-sphères diélectriques en un cristal photonique.

Dans la nature

L'opale est une roche constituée de micro-billes de silice réparties selon un arrangement plus ou moins régulier. De fait, c'est un cristal photonique naturel, même si celui-ci n'a pas de bande interdite complète (i.e. la bande interdite ne s'étend pas selon toutes les directions cristallographiques principales du matériau). Les cristaux photoniques existent aussi chez certaines espèces animales. Par exemple le ver marin Aphrodita possède des épines qui constituent des cristaux photoniques plus efficaces que ceux fabriqués par l'homme. Les ailes du papillon Cyanophrys remus possèdent une nano-architecture complexe, et les couleurs bleu métallique sur le côté dorsal et verte pois sur le côté ventral sont attribuées à la structure type des cristaux photoniques. Elles sont composées de chitine et d'air, et leur arrangement forme une structure diélectrique périodique.

Optique et nanotechnologies

Ces structures sont actuellement la source de nombreuses études et développements en optique dont par exemple :

  • Inhibition ou amélioration de l'émission spontanée (Effet Purcell).
  • Miroirs omnidirectionnels à haute réflectivité.
  • Guides d'ondes à faibles pertes.
  • Filtres optiques.
  • Senseur de micro-cavités.
  • Résonateurs optiques pour lasers à faible seuil.

Les cristaux photoniques permettent déjà le contrôle et la manipulation de la lumière en vue d'applications de type télécom, les cristaux à deux dimensions ayant en effet atteint le niveau de maturité nécessaire pour le développement d'applications. La fabrication industrielle de cristaux photoniques à trois dimensions est encore au stade de la recherche, mais des cristaux phononiques 3D existent déjà.

Actuellement, ils sont utilisés commercialement dans les fibres optiques, mais aussi dans des systèmes plus complexes, comme les sources de lumières Supercontinuum.

Page générée en 0.231 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise