Continuité uniforme - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Propriétés

Fonctions lipschitziennes

Soit I un intervalle quelconque sur les nombres réels. Toute fonction k-lipschitzienne f de I dans l'ensemble des réels est uniformément continue.

En particulier, si f est dérivable et de dérivée bornée sur I, alors f est uniformément continue. En effet, si k est nul la fonction est constante et toute valeur de η satisfait la condition, sinon, ε/k est une valeur satisfaisante pour η.

Théorème de Heine

Le théorème de Heine indique que toute fonction continue d'un espace métrique dans un espace métrique est uniformément continue si l'ensemble de départ est compact.

En particulier, toute fonction continue d'un segment de l'ensemble des réels dans un espace métrique est uniformément continue.

Prolongement par continuité

Toute fonction uniformément continue à valeurs dans un espace complet se prolonge par continuité sur l' adhérence de son espace de départ (et ce, de façon unique).

Cette existence d'un prolongement continu découle du fait que l'image d'une suite de Cauchy par une application uniformément continue est une suite de Cauchy (l'unicité du prolongement continu, étant, elle, un fait général, de même que le fait que ce prolongement hérite de la continuité uniforme).

Cette propriété est utilisée parfois pour définir des fonctions comme l'intégrale ou l'exponentielle ou encore compléter des applications linéaires ou bilinéaires définies sur des espaces vectoriels normés.

Page générée en 0.097 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise