La construction d'un pentagone régulier à la règle et au compas est une des premières constructions (après le triangle équilatéral et le carré) non triviale réalisable grâce aux axiomes d'Euclide. La construction exacte d'un pentagone régulier fait intervenir le nombre d'or et surtout son pendant géométrique : le triangle d'or. Euclide propose une construction d'un pentagone régulier inscrit dans un cercle donné. Mais d'autres méthodes de construction plus rapides existent et sont exposées ci-dessous.
D'autres mathématiciens ou géomètres proposent aussi des constructions approchées réalisables avec un seul écartement de compas. C'est le cas par exemple d'Abu l-Wafa dans son Livre sur l’indispensable aux artisans en fait de construction (Xe siècle), ou de Matthaüs Roritzer dans sa Geometria deutsch (1486), construction qu'Albrecht Dürer reprend dans son Instructions pour la mesure, à la règle et au compas, des lignes, plans et corps solides (1525)
Euclide construit un pentagone régulier (équilatéral et équiangle) inscrit dans un cercle. Son élément de base est le triangle d'or : un triangle isocèle dont les angles avec la base sont double de l'angle au sommet (et ainsi l'angle au sommet est le 5e de l'angle plat). 180/5=36
Dans la figure jointe, I est le milieu de [AC], AC = AB, IB = ID, AD = AE = BF. Euclide démontre que le triangle ABF est un triangle d'or en utilisant des propriétés assez longues
De nos jours, la démonstration est plus simple car si on note AC = 1, on obtient
Les dimensions du triangle ABF sont donc 1 - 1 -
Euclide prouve qu'il peut construire un triangle d'or dans un cercle.
Dans son livre ''Instructions pour la mesure, à la règle et au compas, des lignes, plans et corps solides, Albert Dürer propose cette construction qu'il estime exacte. L'intérêt de cette construction vient du fait de l'économie de moyens mis en œuvre: tous les cercles tracés ont même rayon.
Cependant, le pentagone tracé est bien équilatéral mais il n'est pas équiangle : les angles de base font environ 108,35 ° au lieu des 108° attendus et l'angle au sommet fait un peu plus de 109° . Cette preuve est apportée par les géomètres Giovanni Battista Benedetti et Clavius .
En s'inspirant de la construction de l'enneagone, on peut tracer une construction approchée d'un pentagone régulier, à la règle et au compas, selon la méthode identique à celle donnée pour l'heptagone.
Remarque : pour faire un pentagone comprenant le point B, il aurait fallu prendre le point F’.
Par cette construction, l'angle au centre AOG’’est d'environ 72,14 degré au lieu des 72 attendus, soit une erreur relative de 1,92 pour mille.
Cette méthode permet de faire n'importe quel polygone régulier. Il suffit de sectionner le segment CD en autant de secteurs identiques qu'il y a de côtés souhaités pour le polygone. Ensuite, on prend le troisième point en partant de C (G’), on trace le segment qui le relie à U et on obtient G’’ à l'intersection entre le cercle et ce segment (dans le demi-plan inférieur à XY). L'erreur commise sur l'angle au centre pour cette méthode varie de 1,92 pour mille à 11,7 pour mille selon le nombre de côtés.