Construction de l'anneau des polynômes - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

En algèbre, l'anneau des polynômes formels (à une indéterminée) est un ensemble contenant des nombres, comme les entiers, les réels ou les complexes, et un objet supplémentaire, souvent noté X. Tous les éléments de l'anneau de polynômes s'additionnent et se multiplient : on trouve des polynômes comme 2X, X2 ou encore X2 - X - 1. De plus, une propriété importante est que les polynômes 1, X, X2, X3,... sont linéairement indépendants, aucune combinaison linéaire non triviale de ces polynômes n'est nulle. L'objet de cet article est de présenter une construction rigoureuse de cet ensemble et en particulier de l'objet X, appelé indéterminée.

Cette construction met en lumière les propriétés des éléments de cet ensemble, noté A[X], éléments qui sont appelés polynômes. On retrouve les propriétés qui caractérisent les nombres entiers, par exemple l'addition et la multiplication qui sont associatives et commutatives. Il existe un élément neutre pour l'addition et la multiplication des polynômes, mais si pour l'addition, tout polynôme possède un symétrique, tel n'est pas le cas pour la multiplication. L'élément X ne possède pas d'inverse, autrement dit 1/X n'est pas un polynôme.

L'ensemble des nombres, appelés coefficients, est noté A. Il peut être choisi comme l'un des ensembles de nombres cités ou encore comme n'importe quel anneau commutatif et unitaire (c'est-à-dire que la multiplication possède un élément neutre généralement noté 1). L'ensemble des coefficients des polynômes peut être, par exemple, constitué de polynômes ou d'éléments d'un corps fini.

Il existe d'autres constructions plus générales d'anneaux de polynômes, comme celles traitées dans Polynôme en plusieurs indéterminées ou dans Anneau non commutatif de polynômes.

Préambule

Éléments d'histoire

Le livre arithmetica de Diophante est le premier à décrire l'ajout d'une lettre à un ensemble de nombres.

L'idée d'associer une lettre à un ensemble de nombres date du IIIe siècle. Diophante définit la lettre S (la lettre grecque sigma) ainsi : « Le nombre qui possède une quantité indéterminée d’unités s’appelle l’arithme, et sa marque distinctive est S ». Il ne travaille que sur les nombres entiers et les rationnels. Il définit les règles d'addition et de multiplication : « L'inverse de l'arithme multiplié par le bicarré de l'arithme donne le cube de l'arithme », ce qui signifie que S4 est divisible par S et que le résultat vaut S3. Cette idée est petit à petit généralisée aux nombres irrationnels par la civilisation arabe, à l'origine de notre choix de la lettre X. Si la construction est rudimentaire, elle permet aux mathématiciens de la Renaissance de résoudre toutes les équations jusqu'au degré 4, mais nous sommes cependant encore loin d'une construction rigoureuse, au sens de cet article.

Au XVIIe siècle apparaît un premier formalisme, celui des fonctions. La variable x remplace la lettre X et le polynôme devient une fonction. Cet apport se traduit en résultats concrets, il permet de montrer le théorème de d'Alembert-Gauss qui assure l'existence d'autant de racines que le degré du polynôme, dans l'ensemble des nombres complexes.

Une question de Vandermonde, un mathématicien du XVIIIe siècle, finit par remettre à l'honneur le concept de polynôme formel, qui fait usage d'une lettre X qui s'additionne et se multiplie, mais qui n'est pas une fonction. Il cherche sans succès à résoudre l'équation cyclotomique à l'aide de radicaux, c'est-à-dire de nombres rationnels, de l'unité imaginaire i, des quatre opérations adjointes et des fonctions racine nièmes. C'est finalement Gauss qui y parvient à l'aube du XIXe siècle. Pour cela il considère les polynômes, non comme des fonctions, mais comme des équivalents de nombres entiers, avec une division euclidienne, l'équivalent des nombres premiers et une décomposition unique en facteurs premiers. Il utilise pour cela des polynômes à coefficients dans les congruences, issues de l'arithmétique modulaire. Si les coefficients du polynôme sont choisis dans les congruences, les fonctions polynômes et les polynômes formels diffèrent. Et seul l'aspect formel permet de conclure dans ce cas particulier.

Ce n'est qu'au XXe siècle que le besoin de rigueur fait apparaître la construction présentée dans cet article.

Polynôme vu comme une suite

Polynôme représenté par un tableau par al-Samaw'al

Il existe différentes méthodes pour représenter un polynôme, la plus classique est la suivante, illustrée sur deux polynômes exemples A et B :

A = X^5 + X^3 + X^2 + 1,\quad B = 9X^2+5X+1

Cette écriture peut être rapprochée de celle de l'écriture décimale positionnelle des nombres 101101 et 951, qui peuvent se voir comme :

101101 = 10^5 + 10^3 + 10^2 + 1,\quad 951 = 9. 10^2 + 5.10^1 + 1

Comme l'addition et la multiplication des polynômes suivent presque les mêmes lois que celles des nombres, il peut être pratique, pour additionner et multiplier A et B de faire usage d'un tableau. C'est ainsi qu'al-Samaw'al, un mathématicien arabe du XIIe siècle représentent les polynômes, comme illustré sur la figure de gauche. Sous forme de tableaux, et en utilisant les méthodes classiques d'addition et de multiplication sur les nombres, on obtient :

 +   X5   X4   X3   X2   X   1 
 A   1  0  1  1  0  1
 B   9  5  1
 A+B   1  0  1  10  5  2
 x   X7   X6   X5   X4   X3   X2   X   1 
 A   1  0  1  1  0  1
 B   9  5  1
 1  0  1  1  0  1
 5  0  5  5  0  5
 9  0  9  9  0  9
 AxB   9  5  10  14  6  10  5  1

Les lois de l'addition et de la multiplication sont presque les mêmes, la seule différence réside dans les retenues, qui n'existent pas avec les polynômes. Cette manière de voir un polynôme amène à l'usage d'une écriture condensée. Sous cette forme, un polynôme peut être vu comme une suite. Pour des raisons de commodité, il est plus simple de noter la suite à l'envers, c'est-à-dire en commençant par le coefficient de 1, puis celui de X etc... Avec ce système de notation :

A = (1,0,1,1,0,1,0,0,\cdots),\quad B=(1,5,9,0,0 \cdots)

Ce système est à l'origine de la construction formelle des polynômes proposé ici.

Page générée en 0.314 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise