Composé 334 - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Structure cristallographique des composés R3T3X4

Les composés 334 cristallisent dans une structure cubique complexe de groupe spatial I-43d. Pour décrire celle-ci, il est nécessaire de considérer une maille de volume 2a x 2a x 2a (avec a : paramètre de maille) comprenant 40 atomes [A]. Ainsi, la formule chimique fait référence à 10 atomes, soit une demi-maille élémentaire en volume. Ces composés sont en fait une version remplie d'une structure similaire dont l'archétype est le composé Th3P4. La structure cristalline du composé Y3Au3Sb4 (a = 9,818 A à 300 K) est illustrée figure A :

Figure A : Structure cristalline du composé Y3Au3Sb4 : en noir les atomes d'antimoine, en gris les atomes d'yttrium, en blanc les atomes d'or. Les arêtes permettent de souligner la structure cristalline de type Th3P4 d'après.

Les atomes d'or s'insèrent au centre de tétraèdres irréguliers formés par les atomes d'antimoine d'une part, et les atomes d'yttrium d'autre part (figure B).

Figure B : Environnement d'un atome d'or (en blanc). Les atomes d'antimoine (en noir) et d'yttrium (en gris) forment des tétraèdres déformés d'après.

Les atomes d'yttrium se trouvent au centre d'un dodécaèdre également irrégulier appelé bisdisphénoïde, formé par 8 atomes d'antimoine. Cette structure complexe résulte d'une interpénétration de deux tétraèdres irréguliers (figure C).

Figure C : A gauche, environnement d'un atome d'yttrium (en gris et atome d'antimoine en noir). À droite, la structure complète avec les atomes d'or (en blanc) d'après.

De plus, si on considère les atomes d'antimoine, on constate qu'ils sont au centre d'octaèdres irréguliers formés par six atomes d'yttrium (figure D).

Figure D : Environnement d'un atome d'antimoine (en noir). Les six atomes d'yttrium (en gris) forment un octaèdre irrégulier d'après.

Dwight a constaté que la structure complexe de cette famille de matériaux est décrite en considérant des tétraèdres au centre desquels s'insèrent les atomes de métal de transition et une coordination dodécaédrique pour les atomes R.

La figure E permet de visualiser l'environnement global d'un atome d'yttrium :

Figure E : Environnement de l'atome d'yttrium d'après.

Pour obtenir une description complète, il est nécessaire de considérer l'arrangement dans l'espace de ces deux types de polyèdres. Ceux-ci s'assemblent de deux façons différentes : par les faces ou par les arêtes (figure F). Les formes que l'on obtient alors se répartissent dans l'espace pour remplir la maille cristalline de dimension 2a x 2a x 2a.

Figure F : (a) Assemblage par faces, (b) assemblage par arêtes, les atomes d'antimoine sont en noir, les atomes d'or au centre des tétraèdres et en blanc les atomes d'yttrium d'après.

L'analogie avec les matériaux skutterudites est intéressante. En effet, dans ce type de composés, il est possible d'insérer des atomes au centre des cavités de la structure qui vont servir de centres diffuseurs de phonons afin d'abaisser la conductivité thermique de réseau. Dans le cas présent, ce sont les atomes R, insérés au centre des dodécaèdres, qui sont susceptibles d'agir de la même façon. Par contre, ceux-ci sont beaucoup plus confinés que dans une structure skutterudite comme le montrent les données du tableau 1.

Tableau 1
Y3Au3Sb4 LaFe4Sb12
Y - Sb 3,34 et 3,44 La - Sb 3,46
Y - Au 3,01 La - Fe 3,96
Comparaison des distances interatomiques d du composé skuttérudite rempli LaFe4Sb12 (avec La en insertion dans la cage cubique vide) et du composé Y3Au3Sb4 d'après Young et coll. On constate que le confinement des atomes d'yttrium est plus important que celui des atomes de lanthane (les distances sont exprimées en Ångström).
Page générée en 0.093 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise