Un objet chiral ne possède que deux formes différentes possibles appelées énantiomères (du grec enantios « opposé »). Ainsi une chaussure est un objet chiral avec deux énantiomères : la chaussure droite et la chaussure gauche.
C'est exactement pareil pour les molécules : dès qu'une molécule possède une symétrie suffisamment basse, elle existe nécessairement sous la forme de deux énantiomères qui ont les mêmes propriétés physiques symétriques (solubilité, température d'ébullition, etc.) ; ils peuvent cependant être différenciés par une propriété optique, la déviation de la lumière polarisée : l'un des composés la dévie à droite et l'autre à gauche. Par exemple, l'acide lactique existe en deux formes énantiomères : l'acide lévo-lactique et l'acide dextro-lactique.
Au XIXe siècle, on a montré que certains composés en solution dévient le plan de polarisation de la lumière polarisée. Il y en a qui le dévient à gauche (angle -α) et d'autres à droite (angle +α). Et c'est le cas pour nos énantiomères : il y en a un qui dévie la lumière à droite, il est dit dextrogyre (d), et l'autre qui la dévie à gauche, il est lévogyre (l) au même degré. Ceci permet de les différencier. La nomenclature / fait référence elle à la configuration absolue, c'est-à-dire à l'arrangement spatial du composé par référence à l'alanine, un des acides aminés naturels.
Un mot sur la nomenclature utilisée pour désigner la configuration d'un centre de chiralité (l'arrangement dans l'espace des substituants de l'atome tétravalent) : les chimistes disent R/S pour « Rectus, droit » ou « Sinister, gauche » (nomenclature officielle de Cahn-Ingold-Prelog), mais les biologistes continuent d'utiliser l'ancien système /. Le premier système est fondé un ordre de priorité convenu des quatre différents substituants du carbone asymétrique ; le système / est une désignation graphique dû à Emil Fischer et utilise, pour établir la désignation à donner à une molécule chirale, des corrélations chimiques compliquées à partir du glycéraldéhyde. Il n'y a aucune relation entre les deux systèmes, qui sont basés sur des critères totalement différents. De plus, dans les deux cas, il n'y a aucune relation entre la configuration et les propriétés optiques (dextrogyre ou lévogyre).
La nomenclature R/S définit la configuration absolue puisqu'elle est applicable à tous types de molécules, sur le base de critères non-ambigus. À chaque carbone asymétrique (C*) est attribué un descripteur R ou S en donnant à chacun de ses substituants une priorité selon le numéro atomique de l'atome lié au C* (la plus grande priorité étant accordée au substituant titulaire du numéro atomique le plus élevé). Si deux substituants sont liés au C* par le même atome, il faut, pour attribuer la priorité, se référer aux autres atomes liés à ce dernier, et ainsi de suite. Ensuite, il s'agit de savoir si les trois substituants prioritaires sont présentés d'une façon horaire (en plaçant conventionnellement le substituant le moins prioritaire à l'arrière) ou anti-horaire. L'isomère R est donc vers la droite, soit une configuration où les substituants prioritaires « tournent » dans le sens horaire. L'isomère S correspond à la rotation anti-horaire. Plusieurs carbones peuvent être asymétriques, donc pour présenter le nom complet de la molécule, on ajoute, devant le nom de la molécule (xR, yS)-, où x et y sont les numéros de position des carbones asymétriques et R et S sont les configurations possibles à chaque carbone chiral. On peut donc avoir du (2S,5R)-5-chlorohexan-2-ol, du (2S,5S)-5-chlorohexan-2-ol, du (2R,5R)-5-chlorohexan-2-ol ou encore du (2R,5S)-5-chlorohexan-2-ol. Parmi ces quatre diastéréoisomères, il y a deux paires d'énantiomères (2S,5R et 2R,5S, puis 2S,5S et 2R,5R) où les chiralités des deux centres stéréogènes ont leurs configurations inversées. En général, n centres d'asymétrie donneront 2n diastéréomères, dont 2n-1 paires d'énantiomères.