Chimie - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Étymologie et Histoire

Étymologie

Le terme chimie nous vient du mot arabe الكيمياء al kemi, c'est-à-dire alchimie, littéralement la kemia, la chimie.Al kem signifie aujourd'hui en arabe la quantité, attestant que la chimie passe par une précoce approche quantitative de la matière, couvrant indistinctement le champ des premiers procédés chimiques comme celui du dosage en pharmacopée.

L'alchimie avant de s'égarer parfois dans une quête philosophale ou une théorisation absconse prend sa source dans un savoir précurseur de la chimie égyptienne, déformé et emprunté par les mondes hellénistiques et byzantins, puis préservé dans le monde musulman.

Khem(et) désigne la terre pour les anciens égyptiens. La chimie est l'art de la terre et le savoir sur la terre. Elle a connu différents essors entre 6000 et 2000 ans avant l'ère chrétienne.

Trois étymologies sont fréquemment citées, mais ces hypothèses peuvent être reliées :

  • l'une égyptienne, kemi viendrait de l'ancien égyptien Khemet, la terre. Il se retrouve aussi dans le copte chame « noire » puisque dans la vallée du Nil, la terre est noire. L'art de la kemi, par exemple les poisons minéraux, a pu influencer la magie noire. La terre d'Égypte elle-même aurait été fort anciennement une terre conquise par des peuples noirs.
  • la racine grecque se lie à χυμεία, khumeia, « mélange de liquides » (χυμός, khumos, « suc, jus »).
  • enfin, certains étymologistes assurent que le mot arabe "kemia", vient du grec χεμεία, "khemeia", qui signifie "magie noire" venant de l'égyptien ancien "kem" qui désigne la couleur noire.

Les origines

Schéma de distillation au laboratoire.
La distillation fractionnée sert à séparer des corps chimiques de différentes volatilités. Le recueil méticuleux de phases vapeur semble l'une des plus anciennes opérations chimiques connues.

L'art d'employer ou de trier, préparer, purifier, de transformer les substances séchées mises sous forme de poudres, qu'elles proviennent du désert ou de vallées sèches a donné naissance à des codifications savantes. Elles sont d'abord essentiellement minérales. Mais les plantes éphémères et les arbres pérennes du désert, et leurs extraits gommeux ou liquides nécessaires aux onguents, ont été très vite assimilés à celles-ci, par reconnaissance de l'influence des terres et des roches.

Outre la connaissance du cycle de l'eau et les transports sédimentaires, la progressive maîtrise des métaux et des terres, les Anciens Egyptiens connaissent le plâtre, le verre, la potasse, les vernis, le papier (papyrus durci à l'amidon), l'encens, une vaste gamme de couleurs minérales ou pigments, de remèdes et de produits cosmétiques... Plus encore que les huiles à onction ou les bains d'eaux ou de boues relaxant ou guérisseurs, la chimie est un savoir sacré qui permet la survie, par exemple par l'art sophistiqué d'embaumer ou par le placement des corps des plus humbles dans un endroit sec.

L'art de la terre égyptien a été enseigné en préservant une conception unitaire. Les temples et les administrations religieuses ont préservé et parfois figé le meilleur des savoirs. Le pouvoir politique souverain s'est appuyé sur les mesures physiques, arpentage et hauteur hydraulique des crues, peut-être sur la densité du limon en suspension, pour déterminer l'impôt et sur les matériaux permettant les déplacements ou la mobilité des armées. Le vitalisme ou les cultes agraires et animaux, domaines appliqués de la kemia, ont été préservés dans des temples, à l'instar d'Ammon, conservatoire des fumures azotées et de la chimie ammoniacale antique.

Signes alchimiques des sept métaux : Étain (Jupiter), Plomb (Saturne), Or (Apollon, soleil), Cuivre (Vénus), Mercure, Argent (Diane, Lune), Fer (Mars)

Nos repères de pensée taxonomique sont profondément influencés par les civilisations grecques puis hellénistiques, férues de théorisations, qui ont lentement esquissé de façon sommaire ce qui encadre aux yeux profanes la chimie, la physique et la biologie. Elles ont laissé les techniques vulgaires au monde du travail et de l'esclave. L'émergence de spiritualités populaires, annexant l'utile à des cultes hérmétiques, a promu et malaxé ses bribes de savoirs dispersés. Il est d'ailleurs significatif que les premiers textes datés tardivement du Ier siècle et IIe siècle siècle après Jésus-Christ qui nous soient parvenu comportent à l'exemple de l'alchimie médiévale la plus ésotérique, une partie mystique et une partie opératoire. La religiosité hellénistique nous a ainsi légué aussi bien le bain marie, de Marie la Juive que l'abscon patronage d'Hermès Trismégiste, divinité qui prétendait expliquer à la fois le mouvement et la stabilité de toute chose humaine, terrestre ou céleste.

Evolution avant l'apparition d'une science mécaniste

Au cours des siècles ce savoir empirique oscille entre art sacré et pratique profane. Il s'est préservé comme l'atteste le vocable chimia des scolastiques en 1356, mais savoir et art de faire sont souvent segmentés à l'extrême, parfois amélioré dans le monde paysan, artisan ou minier avant de devenir une science expérimentale, la chimie, au cours des troisième et quatrième décennies du XVIIe siècle. Au même titre que la physique, le prodigieux essor de la pensée et de la modélisation mécanistes, fait naître la chimie sous forme de science expérimentale et descriptive. Riche de promesses, la chimie reste essentiellement qualitative et bute sur le retour incessant des croyances écartées.

La chimie a connu un énorme progrès quantitatif avec Antoine Lavoisier qui l'a promue en science exacte. Subsistaient acceptés par les croyances communes jusqu'en 1850, des alchimistes poursuivant la quête de la pierre philosophale continuant l'alchimie sous une forme ésotérique. La rupture entre la chimie et l'alchimie apparaît pourtant clairement en 1722, quand Étienne Geoffroy l'Aîné, médecin et naturaliste français, affirme l'impossibilité de la transmutation. La chimie expérimentale et l'alchimie diffèrent déjà radicalement ; il est donc nécessaire de pouvoir distinguer ces deux termes restés dans le langage.

Les biographies des savants français et étrangers sont répertoriées dans les articles catégorie: chimiste ou dans la liste de chimistes.

Les représentations de l'atome et de la molécule

John Dalton à son modeste bureau de laboratoire mancunien

L'étude qualitative de la matière a naturellement conduit les premiers chimistes des années 1620-1650 à modéliser sa composition, puisant librement, mais non sans méfiance dans une abondante tradition antique. A la suite de Van Helmont, ces adeptes mécanistes de la contingence maîtrisent déjà la notion de gaz, tiennent compte du facteur de la température et parviennent à expliquer sommairement la pression de vapeur d'un corps et les mélanges miscibles des fluides. John Dalton, persévérant expérimentateur, continuateur de la première lignée mécaniste partiellement abandonnée, a le premier essayé de donner une définition moderne de la notion d'atome. L'atome est une particule fondamentale ou une combinaison de plusieurs d'entre elles. En 1811, Amedeo Avogadro affirme que le volume d'un gaz quelconque à pression et température constante contient le même nombre de particules, qu'ils dénomment molécules intégrantes ou constituantes.

Mais il a encore fallu l'obstination de nombreux chimistes souvent incompris, Jons-Jakob Berzelius en pionnier de l'électrovalence dès 1812, pour réaffirmer la possibilité d'une modélisation à la fois mécaniste et géométrique par le biais d'une architecture atomique. Un Auguste Laurent, proposant pour des séries homologues de molécules organiques un même squelette constitué d'atomes, était atrocement dénigré par les maîtres des laboratoires. Mais malgré la suprématie et l'influence politique des équivalentistes, le revirement s'opère, porté par la reconnaissance des vieux succès de l'électrochimie préparative depuis Humphrey Davy et Michael Faraday et la volonté de corréler quantitativement nombre d'espèces chimiques et masse d'un corps pur.

Représentation de l'atome d'oxygène selon le modèle de Bohr : autour du noyau, les électrons en orbite

Le congrès de Karlsruhe organisé en 1860 par les amis de Friedrich August Kékulé von Stradonitz et de Charles Adolphe Wurtz ouvre la voie à des conventions atomiques. Son influence éveille une intense recherche de classification des éléments qui débouche notamment sur les classifications périodiques de Mendéléiev et de Meyer. Elle entraine un renouveau d'intérêt pour les molécules. Kékulé et Kolbe en chimie organique, Le Bel et Van 't Hoff en chimie générale et plus tard Alfred Werner en chimie minérale établissent les fondements de la représentation en structures moléculaires.

Les orbitales atomiques représentées par les nuages électroniques probabilistes et modélisées à l'aide des équations de la mécanique quantique, le meilleur outil théorique actuel pour décrire le comportement des liaisons quantifiées des atomes et molécules

Ce sont les physiciens attirés par la belle cohérence de la chimie des décennies suivantes qui ont poursuivi à une échelle plus précise les recherches sur la structure de la matière. Les travaux de Joseph John Thomson, découvreur de l'électron en 1897, prouvent que l'atome est constitué de particules électriquement chargées. Ernest Rutherford démontre par sa célèbre expérience en 1909 que l'atome est surtout fait de vide, son noyau, massif, très petit et positif, étant entouré d'un nuage électronique. Niels Bohr, précurseur de la modélisation atomique, affirme en 1913 que les électrons circulent sur des « orbites ». Lorsque James Chadwick découvre les neutrons, la théorie quantique fondée dès le début de l'entre-deux-guerres sur le modèle rival proposé par Erwin Schrödinger renforcée pas les compléments matriciels de Werner Heisenberg, l'affinement théorique de Wolfgang Pauli a déjà pris son envol malgré les contestations appliquées et systématiques d'Albert Einstein. Des années 1930 à notre XXIe siècle, la mécanique quantique explique le comportement de l'atome et des molécules.

Méthodes physiques d'identification de composés chimiques au XXe siècle

Un spectromètre de masse

Au vingtième siècle, l'essor des mesures physiques a facilité aux chimistes la caractérisation des composés avec lesquels ils travaillent. Avant la réaction chimique et un nombre restreint de techniques physico-chimiques s'imposaient en ultime recours pour détecter ou caractériser une molécule. Maintenant les diverses méthodes de chromatographie, de spectrométrie électromagnétique (infrarouge, lumière visible ou UV), de masse, de résonance magnétique nucléaire, les microscopies électroniques et autres analyses par diffraction de rayons X ou par diffusion de particules, et dans des cas d'observation contrôlée sur surface plane, la microscopie par champ de force ont permis une identification plus aisée, et souvent de remonter à la structure géométrique des molécules et de leurs assemblages, de connaître leur composition isotopique et parfois même de "voir" par le multiplicateur instrumental la molécule, de la (dé)placer ou de suivre des réactions (photo)chimiques en temps réel de plus en plus bref. Ces progrès physico-chimiques ont permis des avancées énormes tout particulièrement en biochimie où les édifices étudiés sont complexes et les réactions variées.

Page générée en 0.351 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise