Les méthodes de chimie numérique peuvent être appliquées à la résolution de problèmes en physique du solide ou assimilés (interfaces, etc.) selon les mêmes approches que pour des systèmes moléculaires, mais avec deux différences remarquables. La première est l'utilisation des différentes symétries spécifiques dans ces ensembles (indiquées par les groupes d'espace) et aussi - et surtout - par un usage intensif des conditions périodiques aux limites. La seconde est la possibilité d'utiliser des fonctions de base complètement délocalisées comme des ondes planes comme alternatives aux fonctions de base centrées sur les atomes des molécules.
La structure électronique d'un cristal est en général décrite par une structure de bande, définissant les énergies des orbitales électroniques pour chaque point de la zone de Brillouin. Les calculs ab initio ou semi-empiriques fournissent les énergies orbitalaires, donc elles peuvent être par conséquent appliquées pour les calculs de structure de bande. On remarquera que s'il est coûteux en temps de calculer l'énergie d'une molécule, il est plus coûteux encore de la calculer pour la liste complète des points de la zone de Brillouin.
Les calculs peuvent utiliser des méthodes Hartree-Fock, post-Hartree-Fock (comme la théorie de la perturbation de Møller-Plesset au second ordre - MP2), et bien sûr la théorie de la fonctionnelle de la densité.
Comme pour les molécules, les méthodes employées - générales ou type d'applications au sein d'une application - pour l'étude des systèmes solides dépendent entre autres choses, de la taille des systèmes (influence des lacunes, diffusion, etc.) et des propriétés que l'on cherche à étudier (propriétés mécaniques, comparaisons de stabilité thermodynamique, phonons, conductivité électrique, etc.).
De nombreuses problématiques ont pu émerger de l'utilisation intensive des méthodes de chimie numérique et en particulier des méthodes DFT, ou plus précisément des lacunes constatées dans les approches des sujets et des comparaisons avec les données expérimentales. Ces problématiques touchent à la fois les aspects numériques (progression des algorithmes, parallélisation des codes, etc.), théoriques (introduction et développement de fonctionnelles de la DFT, pseudo-potentiels, etc.) et « expérimentaux » (fiabilité des codes dans leur ensemble, performances machines, etc.). Ainsi, par exemple, une des problématiques majeures de la chimie numérique du solide est le traitement des systèmes comportant une part importante de vide (i.e. cages, interfaces solide-gaz, etc.) par des méthodes d'ondes planes.
L'utilisation de calculs intensifs en chimie numérique du solide touche de nombreuses problématiques de cette discipline. On les retrouve dans des domaines aussi variés que la conception de nouveaux matériaux pour batteries, de stockage d'hydrogène, l'étude de nanotubes pour applications de microélectronique ou encore l'étude des comportements de matériaux de type « nucléaires ».
L'une des thématiques abordées par cette recherche ces vingt dernières années porta sur la proposition de nouvelles phases dites ultra-dures afin de pallier l'étroitesse du domaine d'utilisation du diamant dans des procédés de type industriel comme la découpe de matériaux ou autres enrobages de protection (industrie pétrolière). L'un des défauts majeurs montrés par le diamant est sa métastabilité thermodynamique dans les conditions normales de température et pression, sa sensibilité au phénomène d'oxydation et surtout - quand on à faire avec le phénomène d'échauffement par frottement, à sa décomposition au-delà de 870 K dans l'air. Bien que connaissant et utilisant le nitrure de bore cubique - moins dur - comme matériau de remplacement dans certains domaines thermodynamiques, l'industrie reste à la recherche de matériaux aux propriétés mécaniques et thermodynamiques pouvant combiner les avantages des deux matériaux.
L'initialisation de cette recherche a réellement eu lieu d'un point de vue théorique dans les années 1980, lorsque les américains A.Y. Liu et M.L. Cohen présentèrent dans un article une équation semi-empirique simple pour formuler de tels matériaux, équation appuyée par des calculs de type ab initio : leur résumé indique « The empirical model indicates that hypothetical covalent solids formed between carbon and nitrogen are good candidates for extreme hardness », ouvrant la voie à la recherche théorique et expérimentale de structures ultra-dures de type carbonitrure (de formule générale CxNy) avec pour prototype C3N4.
Entre cette annonce et l'année 2003 - date de la première publication sur une synthèse de carbonitrure C3N4±δ cristallin tridimensionnel - bien que les équipes d'expérimentateurs n'aient pu que produire quelques phases bidimensionnelles donc impropre à une utilisation comme ultra-durs, les équipes de théoriciens ont proposé un nombre relativement important de structures C3N4 tridimensionnelles susceptibles de remplir les conditions voulues, propositions confortées dans le même temps par des calculs essentiellement de type DFT, puis étendu à la recherche d'autres formulations (BC3N3, C11N4, etc.), en interprétant de concert les phénomènes microscopiques en jeu dans la propriété macroscopique de dureté (avec en particulier l'influence de l'existence de doublets électroniques non engagés).