Champ magnétique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Énergie magnétique

La présence d'un champ magnétique s'exprime globalement par une énergie, dite « énergie magnétique ». Elle s'exprime par :

\mathcal E_B = \int \frac{|\boldsymbol B(\boldsymbol x)|^2}{2 \mu} \, {\rm d} \boldsymbol x,

avec |B| étant la norme du champ magnétique et μ la perméabilité magnétique en chacun des points considérés.

En pratique, on définit une énergie volumique, appelée dans ce contexte pression magnétique :

e_B = \frac{|\boldsymbol B|^2}{2 \mu}.

Effets du champ magnétique

Effets physiques

Force de Lorentz

La force de Lorentz.

Le champ magnétique influence les particules chargées au travers de la force de Lorentz.

En l'absence de champ électrique, l'expression de cette force est, pour une particule de charge q animée d'une vitesse v :

\boldsymbol F = q \boldsymbol v \wedge \boldsymbol B

où on a noté le produit vectoriel par une croix, et où les quantités sont exprimées dans les unités du système international.

On peut réécrire cette relation sous forme différentielle pour un fil, en introduisant le courant électrique :

\mathrm d \boldsymbol F = I \mathrm d \boldsymbol l \wedge \boldsymbol B

avec I l'intensité du courant électrique, B le champ magnétique et dl une portion infinitésimale de fil, symbolisée par un vecteur tangent à celui-ci.

Cette expression se généralise aux distributions de courants bidimensionnelles (surfaces et courants surfaciques) aussi bien que tridimensionnelles (volumes et courants volumiques). On introduit dans ces cas la notion d'« élément de courant » dC, définie par :

  • dC = j·dS pour une surface, où j est le courant surfacique ;
  • dC = j dτ pour un volume, où j est le courant volumique.

On a ainsi une expression générale :

\mathrm d \boldsymbol F = {\rm d} \boldsymbol C \wedge \boldsymbol B .

Force de Laplace

La force de Laplace est simplement un cas particulier de la force de Lorentz, pour un barreau homogène et conducteur, parcouru par un courant électrique et placé dans un champ magnétique.

Contrairement à la force de Lorentz, elle ne traite pas des particules constituantes du barreau, mais de l'effet macroscopique : si son expression est similaire, le sens physique des objets considérés diffère. En particulier, la force n'est pas toujours orthogonale à la vitesse.

L'expression de la force de Laplace est :

\mathrm d \boldsymbol F = I \mathrm d \boldsymbol l \wedge \boldsymbol B,

I est l'intensité du courant, B le champ magnétique et dl' un élément infinitésimal du barreau.

Supraconducteurs

L'effet Meissner résulte de l'expulsion des champs magnétiques par un matériau supraconducteur.

Les matériaux supraconducteurs ont la propriété intéressante de ne pas pouvoir être pénétrés par un champ magnétique : on parle d'expulsion du champ magnétique. On observe ce phénomène par exemple au travers de l'effet Meissner.

Une des interprétations possibles consiste à fournir une masse aux photons, porteurs du champ magnétique, ce qui diminue la portée de ce champ à l'intérieur du matériau. Il est ainsi possible de faire des analogies avec des processus comme le mécanisme de Higgs, qui explique la masse des porteurs des interactions nucléaires.

On traduit cela par une expression particulière du potentiel vecteur.

Cet effet ne saurait par ailleurs être observé entre deux aimants : la lévitation statique serait alors interdite par le théorème d'Earnshaw.

Dans la théorie BCS, qui traite des supraconducteurs, on peut montrer que le potentiel vecteur est de la forme :

\boldsymbol A (x) = \boldsymbol A_0 e^{-\frac{x}{\lambda}},

ou x la profondeur de pénératration dans le supraconducteur et λ est la longueur de pénétration caractéristique, qui vaut

\lambda = \sqrt{\frac{m}{2 \mu_0 e^2 \rho_{\rm s}}} ,

m est la masse d'un électron, e sa charge électrique et ρ la densité superfluide du supraconducteur, supposée uniforme et constante. Ainsi, le potentiel vecteur — donc le champ magnétique — ne pénètre que sur une épaisseur de quelques λ à l'intérieur du matériau.

Si le champ magnétique environnant le matériau supraconducteur est trop intense, celui-ci ne peut expulser le champ dans sa totalité. Certaines régions du matériau supraconducteur vont devenir non supraconductrices et canaliser le champ magnétique. Le supraconducteur a tendance à minimiser la taille de telles régions, qui prennent la forme de tubes alignés le long du champ magnétique. Ces régions sont appelées, pour des raisons évidentes, tubes de flux.

Induction, induction mutuelle et ondes

Chauffage par induction d'une bouteille en métal : la variation d'un champ magnétique induit des courants dans le corps de l'objet, qui échauffent celui-ci par effet Joule.

Le phénomène d'induction électromagnétique (ou induction magnétique ou, simplement, induction) a pour résultat la production d'une différence de potentiel aux bornes d'un conducteur électrique soumis à un champ électromagnétique variable. Cela s'exprime au travers de l'équation locale de Maxwell-Faraday :

\boldsymbol \nabla \wedge \boldsymbol E = - \frac{\partial \boldsymbol B}{\partial t},

E étant le champ électrique, B le champ magnétique.

Ce champ électrique peut à son tour engendrer un champ magnétique, propageant ainsi une onde électromagnétique.

Lorsqu'un matériau est placé dans un champ magnétique variant, il apparaît dans celui-ci un champ électrique (dont la circulation est appelée force électromotrice) qui génère à son tour des courants, appelés courants de Foucault. C'est d'une part le principe des alternateurs, qui produisent de l'électricité en déplaçant des aimants. C'est d'autre part le principe des chauffages et plaques à induction, car la dissipation par effet Joule de ces courants échauffe le métal.

Par ailleurs, deux systèmes magnétiques, comme des bobines, peuvent être couplés au travers du champ magnétique. On parle d'induction mutuelle (ou de mutuelle induction). Cet effet modifie le comportement individuel de chaque circuit.

On peut aborder cet effet par un modèle très simple : un conducteur ohmique de conductivité électrique γ est parcouru par un champ magnétique sinusoïdal, d'intensité B et de pulsation ω. Ce champ est, à tout instant t, d'intensité B donnée par :

B = B_0 \sin( \omega t + \varphi) .

Ce champ induit dans le conducteur, d'après la loi de Faraday, un champ électrique E d'intensité E donnée par

E = - \omega B_0 \cos( \omega t + \varphi) .

D'après la loi d'Ohm, il se dissipe donc une puissance moyenne volumique, par effet Joule :

\mathcal P = \gamma \langle E^2 \rangle = \frac{\gamma \omega^2 B_0^2}{2}.

Effet Hall

Un conducteur, parcouru par un courant électrique selon une direction, soumis à un champ magnétique dirigé dans une seconde direction, présente une différence de potentiel selon la troisième direction. Ce phénomène est connu sous le nom d'effet Hall, en l'honneur du physicien américain Edwin Herbert Hall.

Illustration de l'effet Hall

On peut expliquer cet effet au travers de la physique classique, en considérant que les porteurs de charge (par exemple les électrons) qui se déplacent dans le corps du conducteur sont soumis à la force de Lorentz, donc déviés, de sorte que leur répartition est différente d'une part et d'autre du conducteur — d'où la différence de potentiel. On peut l'expliquer de manière plus fondamentale du point de vue de la mécanique quantique.

Cet effet est à la base de nombreux dispositifs de mesure du champ magnétique et du courant électrique.

Magnétorésistance

En présence d'un champ magnétique, certains conducteurs voient leur résistance électrique varier. Cet effet est appelé magnétorésistance, et présente de nombreuses applications, par exemple dans les disques durs qui équipent les ordinateurs modernes.

Il n'existe pas à ce jour d'explication définitive de tous les phénomènes de magnétorésistance, mais des théories distinctes qui régissent les principales manifestations de cet effet : la magnétorésistance classique, « géante », « colossale » et la magnétorésistance à effet tunnel.

Dipôles magnétiques

Un dipôle magnétique, caractérisé par son moment magnétique, est analogue à un aimant droit.

Parfois, on peut introduire la notion de moment magnétique, qui permet de travailler avec des dipôles.

En particulier, on utilise ce modèle au niveau microscopique, lorsqu'un ensemble de molécules ou de particules est parcouru par un courant. Pour une boucle ceinturant une surface orientée S et parcourue par un courant I, on définit le moment magnétique M par :

\boldsymbol M = I \boldsymbol S.

Ceci revient à assimiler l'objet à un aimant droit infiniment fin. On peut alors introduire une énergie potentielle dipolaire :

 E_p = - \boldsymbol M \cdot \boldsymbol B.

Ainsi, elle est minimale lorsque le dipôle est aligné avec le champ. On montre de même que, dans une chaîne de dipôles, ils s'orientent tous dans une même direction pour minimiser leur énergie. Dans les cas (fréquents) où on ne sait pas modéliser la structure d'un dipôle magnétique par une boucle de courant, le moment magnétique est défini par la relation ci-dessus, c'est-à-dire par l'énergie qu'il faut fournir pour tourner un dipôle magnétique dans un champ magnétique donné.

Dans les matériaux, lorsqu'on considère des moments magnétiques de particules, le fait qu'ils s'orientent tous de la même manière ne peut être expliqué que d'un point de vue quantique (principe d'exclusion de Pauli et hamiltonien de Heisenberg).

En présence d'un champ magnétique, le fer s'aimante à son tour et devient un dipôle. Il est alors soumis aux forces créées par un aimant droit et s'oriente selon les lignes de champ.

Dans le cadre d'un dipôle magnétique de moment M soumis à un champ B, lorsque le champ est homogène, le torseur des forces se réduit au moment car la résultante des forces est nulle. On a donc :

 \boldsymbol \Gamma = \boldsymbol M \wedge \boldsymbol B,

Γ le moment résultant, M le moment magnétique du dipôle et B le champ magnétique.

Cela explique notamment l'effet d'un champ magnétique sur une boussole : il a tendance à aligner l'aiguille de celle-ci avec le champ.

Si en revanche le champ est inhomogène, alors le dipôle subit de plus une force, dont l'expression est :

 \boldsymbol F = \left( \boldsymbol M \cdot  \mathbf \boldsymbol \nabla \right) \boldsymbol B,

avec les mêmes notations que précédemment.

Cela explique notamment le fait que deux aimants s'attirent : cette force s'exerce sur le premier de sorte à l'approcher des champs plus intenses, donc plus près de l'autre aimant. En supposant cette fois que les pôles sont ponctuels, alors l'intensité de la force F s'exerçant d'un pôle sur l'autre est donnée par :

F=\frac{\mu g_1 g_2}{4\pi r^2},

g et g représentent l'intensité de ces pôles en (A·m si elles sont exprimées dans le système international d'unités), μ la perméabilité magnétique du milieu, et r la distance entre les pôles.

Effets géologiques

Certaines roches sont riches en matériaux ferromagnétiques, qui sont sensibles au champ magnétique. En particulier, ils perdent leurs propriétés magnétiques au-delà d'une certaine température, dite température de Curie.
Les roches basaltiques issues par exemple des volcans ou des rifts océaniques, sont chauffées au-delà de cette température dans le magma. Lorsqu'elles refroidissent, elles regagnent leurs propriétés magnétiques, et figent l'orientation du champ magnétique terrestre. On observe cet effet au travers des anomalies magnétiques des roches. C'est par l'analyse de ces roches que l'on a observé les inversions du champ terrestre.
Il existe également des roches, comme l'hématite, dont les propriétés magnétiques sont telles qu'on observe les variations de champ au cours de leur formation. L'étude de ces roches est également un élément déterminant qui appuie la tectonique des plaques.

Effets biologiques

Effet des champs magnétostatiques

Les différentes espèces connues ne sont pas identiquement sensibles aux champs électromagnétiques. Les données concernant les êtres humains sont encore sporadiques. Les champs statiques inférieurs à 8 teslas n'ont vraisemblablement pas d'effets physiologiques notables, si ce n'est l'apparition chez certaines personnes de phosphènes lorsqu'ils sont exposés à des champs de plus de 4 T. L'organisation mondiale de la santé mène encore aujourd'hui des études sur les risques potentiels.

Des champs continus aussi intenses sont relativement difficiles à obtenir en dehors des laboratoires spécialisés, les applications courantes impliquant généralement des champs inférieurs au tesla.

Les recherches actuelles s'orientent davantage sur les champs non ionisants de très basse fréquence (EMF : extremely low frequency), qui ne sont pas statiques, mais semblent agir sur les systèmes biologiques ou parfois provoquer des cancers.

Effet des champs magnétiques pulsés

Les champs pulsés, que l'on peut créer beaucoup plus intenses, provoquent de plus par induction un rayonnement électromagnétique. Celui-ci peut interagir avec les systèmes biologiques, et son effet dépend de la radiorésistance des espèces exposées. Notamment, selon la fréquence, de tels champs peuvent provoquer des radiations ionisantes : ultraviolets, rayons X ou gamma. Ceux-ci sont dangereux pour la santé, et provoquent en particulier la brûlure des tissus.

Récemment, des médecines alternatives faisant intervenir des champs magnétiques faibles pulsés prétendent limiter les cancers ou la sclérose en plaques. Si de tels champs ne semblent pas dangereux, aucune étude scientifique sérieuse n'appuie à ce jour ces allégations. En revanche, les champs magnétiques pulsés peuvent influencer l'équilibre et semblent diminuer les symptômes du trouble bipolaire.

Les effets, principalement liés à l'induction dans les nerfs, permettent ainsi via la stimulation magnétique transcranienne, le diagnostic de pathologies neurologiques.

Page générée en 1.104 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise