Champ magnétique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Expression du champ magnétique

Notation

On note généralement le champ magnétique avec la lettre B, écrite en caractère gras ou surmontée d'une flèche, ces deux notations indiquant qu'il s'agit d'un vecteur (ou en l'occurrence d'un pseudovecteur) : \vec B ou B. Cette lettre, empruntée à James Clerk Maxwell, vient de ses notations : il décrivait les trois composantes du champ magnétique indépendamment, par les lettres B, C, D. Les composantes du champ électrique étant, dans les notations de Maxwell les lettres E, F, G.

Le champ étant défini dans tout l'espace, c'est en fait une fonction des coordonnées, en général notées par le rayon vecteur r, et éventuellement du temps t, aussi est-il noté B(r) ou B(rt). Cependant, on utilise souvent la notation B, la dépendance spatiale et/ou temporelle étant implicite.

Unités

Des aimants NdFeB, créant un champ de 1,25 tesla (en haut et entre les sphères), supportant 1 300 fois leur propre poids.

L'unité moderne utilisée pour quantifier l'intensité du champ magnétique est le tesla, défini en 1960. C'est une unité dérivée du système SI. On définit un tesla par un flux d'induction magnétique d'un weber par mètre carré :

1 T = 1 Wb·m-2 = 1 kg·s-2·A-1= 1 N·A-1·m-1 = 1 kg·s-1·C-1.

Pour diverses raisons historiques remontant aux travaux de Charles de Coulomb, certains auteurs préfèrent utiliser des unités hors du système SI, comme le gauss ou le gamma. On a :

  • 1 tesla ≈ 10 000 gauss (approximation) ;
  • 1 tesla = 1 000 000 gamma.

Enfin, on utilise également parfois l'œrsted, notamment pour quantifier la « force » des aimants naturels, dont l'équivalent SI est l'ampère par mètre A.m-1 par la relation :

1\, \mathrm{Oe} = \frac{10^3}{4 \pi} \mathrm{A \cdot m^{-1}}.

Ordres de grandeur

Dans l'espace interplanétaire, le champ magnétique est compris entre 10-10 et 10-8 T. Des champs magnétiques à plus grande échelle, par exemple au sein de la Voie lactée sont également mesurés, par l'intermédiaire du phénomène de rotation de Faraday, en particulier grâce à l'observation des pulsars. L'origine et l'évolution des champs magnétiques aux échelles galactiques et au-delà est à l'heure actuelle (2007) un problème ouvert en astrophysique. Les étoiles, à l'instar des planètes, possèdent aussi un champ magnétique, qui peut être mis en évidence par spectroscopie (effet Zeeman). Une étoile en fin de vie a tendance à se contracter, laissant à l'issue de la phase où elle est le siège de réactions nucléaires un résidu plus ou moins compact. Cette phase de contraction augmente considérablement le champ magnétique à la surface de l'astre compact. Ainsi, une naine blanche possède un champ magnétique pouvant aller jusqu'à 104 teslas, alors qu'une étoile à neutrons jeune, bien plus compacte qu'une naine blanche a un champ mesuré à 108 voire 109 teslas. Certaines étoiles à neutrons appelées pulsars X anormaux et magnétars semblent être dotées d'un champ magnétique jusqu'à 100 fois plus élevé.

Un aimant NdFeB (néodyme-fer-bore) de la taille d'une pièce de monnaie (créant un champ de l'ordre de 1,25 T) peut soulever un objet de 9 kg et effacer les informations stockées sur une carte de crédit ou une disquette. Les utilisations médicales, comme l’IRM, impliquent des champs d'intensité allant jusqu'à 6 T. Les spectromètres RMN peuvent atteindre jusqu'à 23,5 T (1 GHz résonance du proton).

Étant une composante du champ électromagnétique, l'intensité du champ magnétique décroît avec la distance à sa source, mais est de portée infinie. Ceci est intimement lié au fait que la particule élémentaire vecteur de l'interaction électromagnétique, le photon, est de masse nulle.

Page générée en 0.190 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise