Capacité thermique massique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Cas des solides

Valeurs courantes

Substance

(phase solide)

Capacité thermique

massique J·kg-1·K-1

Asphalte 920
Brique 840
Béton 880
Granite 790
Gypse 1090
Marbre 880
Sable 835
Bois ≈ 1200-2700

Cas des solides cristallisés

Dans le cas des solides, à suffisamment haute température, la loi de Dulong et Petit est applicable et permet notamment retrouver que, à basse température,  C_V \sim T^3 du fait de la contribution des phonons. Si le solide est un métal, il faut ajouter la contribution des électrons qui est proportionnelle à la température.

Les coefficients de dilatation des corps solides et liquides sont généralement suffisamment faibles pour qu'on néglige la différence entre Cp et CV pour la plupart des applications.

Substance Θ (K)
Al 398
C (diamant) 1860
Cu 315
Fe 420
K 99
Pb 88

Suivant la théorie de Debye, la capacité thermique molaire d'un corps simple solide peut être déterminée au moyen de la formule :

C_V(T)=3R (4D(u) - \frac{3u}{\exp{u}-1})

avec u=\frac{\Theta}{T} ,

Θ est la température de Debye, qui est une caractéristique de chaque substance,

R est la constante molaire des gaz,

et D(u)=\frac{3}{u^3}\int_{0}^{u}(\frac{x}{2}+\frac{x}{\exp{(x)}-1})x^2dx .

Cette formule se simplifie à basse température, ainsi qu'à haute température ; dans ce dernier cas, nous retrouvons la loi de Dulong et Petit :

C_V(T)=\begin{cases} \frac{12}{5}\pi^4 R\cdot (\frac{T}{\Theta})^3, & \mbox{si }T<<\Theta \\ 3R & \mbox{si }T>>\Theta \end{cases}

La théorie n'est plus valable pour les corps composés.

Formules empiriques

Pour des corps purs (solides, liquides ou gazeux) et à pression constante, 2 formules empiriques à 3 paramètres ont pu être dégagées, pour un intervalle de température donné :

Cp = a + bT + cT2 ou bien Cp = a' + b'T + c'T − 2.

Les valeurs des coefficients sont indiqués dans des tables et sont caractéristiques d'un corps donné.

Pour le bois sec, par exemple, on a :

c_{p,anhydre} = 0,1031 + 0,003867\, T

avec :

  • cp,anhydre : exprimé en kJ·kg–1·K–1
  • T : température thermodynamique (K).

À 20°C, on obtient 1236 J/kg.K pour le bois sec.

Pour le bois humide :

c_{p,humide} = \frac{100\,c_{p,anhydre} + Hs\,c_{p,eau}}{100 + Hs}

Hs est la masse d'eau rapportée à la masse du bois sec en %.

Valeurs pour différentes substances

Capacité thermique massique à pression constante dans les conditions normales de température et de pression (sauf indication contraire)
Substance Phase Capacité thermique
massique
J·kg-1·K-1
Air (sec) gaz 1005
Air (saturé en vapeur d'eau) gaz ≈ 1030
Aluminium solide 897
Azote gaz 1042
Cuivre solide 385
Diamant solide 502
Eau gaz 1850
liquide 4186
solide (°C) 2060
Éthanol liquide 2460
Fer solide 444
Graphite solide 720
Hélium gaz 3160
Hexane liquide ≈ 2267.95
Huile liquide ≈ 2000
Hydrogène gaz 14300
Laiton solide 377
Lithium solide 3582
Mercure liquide 139
Octane liquide ≈ 1393.33
Or solide 129
Oxygène gaz 920
Zinc solide 380
Page générée en 0.096 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise