Calculs relativistes - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Le quadrivecteur énergie impulsion

Pour exprimer le quadrivecteur énergie impulsion d'une particule de masse m0 se déplaçant à la vitesse \vec V , il suffit de considérer une masse m0 et de former comme en mécanique classique l'impulsion qui est le produit de la masse par la vitesse.

En mécanique relativiste, nous formons le produit de la masse par la quadri-vitesse, obtenant ainsi le quadrivecteur énergie-impulsion :

p^\alpha=m_0u^\alpha=(\gamma(V) m_0c,\gamma(V)m_0\vec{V})=  \left (\frac {m_0c}{\sqrt{1-\frac{V^2}{c^2}}}, \frac {m_0\vec V}{\sqrt{1-\frac{V^2}{c^2}}}\right)=\mathbf{P}= \left (\frac {E}{c}, \vec p \right)
Si on calcule la pseudo norme, on obtient :
 \mathbf{P^2}=(\frac {E}{c})^2 -(\vec p )^2= m_0^2c^2
\mathbf{P}=\begin{pmatrix} \\ \frac {E}{c}\\ \ p_x\\ \ p_y\\ \ p_z\\\end{pmatrix} = \begin{bmatrix} \gamma & \gamma\beta& 0 & 0\\ \gamma\beta & \gamma & 0& 0\\ 0 & 0 & 1& 0\\ 0 & 0 & 0& 1\end{bmatrix}\begin{pmatrix} \\ \frac {E'}{c}\\ \ p'_x\\ \ p'_y\\ \ p'_z\\\end{pmatrix}= \mathbf{[\mathcal{L}]}*\mathbf{P'}
La pseudonorme étant un invariant, on va pouvoir l'égaler à elle-même en la calculant dans différents référentiels avant et après un choc évènement par exemple.

Dans la définition du quadrivecteur, on a posé : \gamma(V) m_0c = {E \over c} où E est l'énergie associée à la particule en mouvement. E = γ(V)m0c2

  \gamma(V) m_0 = {m_0 \over \sqrt{1 - V^2/c^2}} , quantité qui tend vers l'infini quand V tend vers c a souvent été utilisée au XXième siècle en termes de masse variable.

On préfère aujourd'hui réserver le mot masse pour désigner l'énergie propre d'une particule ; c’est-à-dire son énergie au repos.

Accélération et énergie

Si, dans l'étude du paragraphe précédent, on souhaite que la loi F = m_0g = {d(mV) \over dt} reste valide, il faut, puisque dV/dt n'est pas constant, que m ne le soit pas non plus. F étant constante, on a nécessairement mV = Ft avec, comme on l'a vu :

V = \frac{gt}{\sqrt{1+\frac{g^2t^2}{c^2}}}

ce qui donne :

t = \frac{1}{\sqrt{1 - {V^2 \over c^2}}} {V \over g}

On obtient alors :

m = {Ft \over V} = \frac{F}{g\sqrt{1 - {V^2 \over c^2}}} = \frac{m_0}{\sqrt{1 - {V^2 \over c^2}}}

Ainsi, lorsque V augmente, on est amené à attribuer une masse m en mouvement de plus en plus importante, afin que la loi fondamentale de la dynamique reste valide.

E = mc2

Toujours dans le cadre de l'étude précédente, la particule M voit son énergie varier avec la puissance suivante :

 P = F . V = m_0gV = {dE \over dt} = {dE \over dm}{dm \over dV}{dV \over dt}

or :

{dV \over dt} = (1 - {V^2 \over c^2})^{3/2}g et {dm \over dV} = {V \over c^2}\frac{m_0}{(1 - V^2/c^2)^{3/2}}

d'où, après simplification :

{dE \over dm} = c^2

ce qui conduit à la formule la plus célèbre de la physique :

{E = mc^2 \over ~}

On remarque que la variation d'énergie depuis l'instant initial est :

E - E_0 = (m - m_0)c^2 = m_0c^2({1 \over \sqrt{1 - V^2/c^2}} - 1)

qui donne {1 \over 2}m_0V^2 pour les petites vitesses. On retrouve l'expression classique de l'énergie cinétique.

Le quadrivecteur force et la transformation des forces

Soit une particule de masse m0, se déplaçant à la vitesse \vec V par rapport à un référentiel inertiel \mathbb R . On peut, comme en mécanique classique, définir la force à laquelle est soumise cette particule si sa quantité de mouvement varie, par :

\vec F = {d\vec p \over dt}

avec , et sa variation d'énergie par :

\vec F.\vec V = {dE \over dt}

Mais pour passer d'un référentiel à l'autre, il vaut mieux utiliser le quadrivecteur force défini comme la dérivée du quadrivecteur impulsion par rapport au temps propre :

F^\alpha = {dp^\alpha \over d\tau} = \gamma(V){dp^\alpha \over dt} = \gamma(V) {d \over dt}({E \over c},\vec p) = \gamma(V) ({\vec F.\vec V \over c},\vec F) = \mathbf{F}

L'application d'une transformation de Lorentz à ce quadrivecteur permet de savoir comment une force se transforme d'un référentiel à l'autre.

Si (Fx,Fy,Fz) sont les composantes de \vec F dans le référentiel \mathbb R et si (F'x,F'y,F'z) sont ses composantes dans le référentiel \mathbb R' en translation de vitesse v par rapport à \mathbb R , alors on trouve que :

F'_x = F_x - {1 \over 1 - {\beta V_x \over c}}(\beta {\vec F.\vec V \over c})
F'_y = {1 \over \gamma(1 - {\beta V_x \over c})} F_y
F'_z = {1 \over \gamma(1 - {\beta V_x \over c})} F_z

avec \gamma = {1 \over \sqrt{1 - {v^2 \over c^2}}} et \beta = {v \over c} .

En particulier, si la vitesse V du point mobile coïncide à un instant donné avec la vitesse v du référentiel \mathbb R , alors F'x = Fx, par contre les deux autres composantes sont différentes.

Exemple 1 : chute libre

Considérons une particule de masse m0 située en t = 0 en O et se déplaçant à la vitesse v selon l'axe Ox. On lui applique une force constante F = m0g selon l'axe Oy. En mécanique galiléenne, sa trajectoire est une parabole. Qu'en est-il en mécanique relativiste ?

En écrivant que \vec F = {d\vec p \over dt} et en projetant cette relation sur deux axes, on obtient, en notant Vx et Vy les composantes de sa vitesse V à l'instant t :

\left\{\begin{matrix} {d \over dt} (\gamma(V)V_x) = 0\\{d \over dt} (\gamma(V)V_y) = g\end{matrix}\right.

d'où :

\left\{\begin{matrix} \gamma(V)V_x = v\\\gamma(V)V_y = gt\end{matrix}\right.

La résolution de ce système conduit à :

\left\{\begin{matrix} V_x = {v \over \sqrt{1 + {v^2+g^2t^2 \over c^2}}} = {dx \over dt}\\V_y = {gt \over \sqrt{1 + {v^2+g^2t^2 \over c^2}}} = {dy \over dt}\end{matrix}\right.

et l'intégration de ces deux relations donnent les coordonnées x et y de la particule à l'instant t :

\left\{\begin{matrix} x = {vc \over g} \sinh^{-1}({gt \over \sqrt{c^2 + v^2}})\\y = {c \over g} \sqrt{c^2+v^2}(\sqrt{1 + {g^2t^2 \over c^2 + v^2}}-1)\end{matrix}\right.

où sinh-1 est la réciproque du sinus hyperbolique. Si on exprime y en fonction de x, on obtient :

y = {c \over g} \sqrt{c^2+v^2}(\cosh({gx \over vc})-1)

qui est l'équation d'une chaînette et non plus d'une parabole.

On peut retrouver les solutions de la mécanique galiléenne en augmentant indéfiniment la valeur de c, ce qui donne :

\left\{\begin{matrix} x = vt\\y = {1 \over 2}gt^2\\y = {gx^2 \over 2v^2}\end{matrix}\right.

Exemple 2 : champ électrique

On considère dans le référentiel \mathbb R un champ électrique \vec E , et une particule de charge q, se déplaçant dans ce champ. Celle-ci est soumise à une force \vec F = q\vec E . Qu'en est-il dans le référentiel \mathbb R' en déplacement à la vitesse v parallèle à Ox par rapport à \mathbb R  ?

À partir des relations :

\left\{\begin{matrix}F_x=qE_x\\F_y=qE_y\\F_z=qE_z\end{matrix}\right. {\rm,~}\left\{\begin{matrix}F'_x = {1 \over 1 - {\beta V_x \over c}}(F_x - \beta {\vec F.\vec V \over c}) \\ F'_y = {1 \over \gamma(1 - {\beta V_x \over c})} F_y \\F'_z = {1 \over \gamma(1 - {\beta V_x \over c})} F_z\end{matrix}\right. {\rm~et~}  \left\{\begin{matrix}V_x = {V'_x + v \over 1 + \beta V'_x/c} \\V_y = {V'_y \over \gamma(1 + \beta V'_x/c)}\\V_z = {V'_z \over \gamma(1 + \beta V'_x/c)}\end{matrix}\right.

avec \beta = {v \over c} et \gamma = {1 \over \sqrt{1 - v^2/c^2}} , on en déduit que :

\left\{\begin{matrix}F'_x=qE_x - \gamma\beta q{E_yV'_y+E_zV'_z \over c} \\F'_y=\gamma qE_y + \gamma\beta q{E_yV'_x \over c} \\F'_z=\gamma qE_z + \gamma\beta q{E_zV'_x \over c} \end{matrix}\right.

La force \vec F' est de la forme :

\vec F' = q\vec E' + q\vec V' \times \vec B'

avec \vec E' champ électrique de composantes \begin{pmatrix}E_x \\ \gamma E_y \\ \gamma E_z\end{pmatrix} et \vec B' champ magnétique de composantes {\gamma \beta \over c}\begin{pmatrix}0 \\ E_z \\ -E_y\end{pmatrix}

Ainsi, le fait de changer de référentiel a légèrement modifié les composantes du champ électrique orthogonales au déplacement, et a fait apparaître un champ magnétique. Ce champ n'est que l'effet relativiste du changement de référentiel.

\vec B' = - {\gamma \over c^2} \vec v \times \vec E

Exemple 3 : champ magnétique

On considère maintenant la même particule, mais dans un champ magnétique \vec   B . La force à laquelle la particule est soumise est cette fois :

\vec F = q\vec V \times \vec B

Les composantes de cette force sont :

\left\{\begin{matrix}F_x=q(V_yB_z -  V_zB_y)\\F_y=q(V_zB_x-V_xB_z)\\F_z=q(V_xB_y-V_yB_x)\end{matrix}\right.

En opérant comme dans le paragraphe précédent, on trouve les composantes de la force dans le référentiel \mathbb R'  :

\left\{\begin{matrix}F'_x=q\gamma(V'_yB_z - V'_zB_y)\\F'_y=q(V'_zB_x-\gamma V'_xB_z -  \gamma vB_z)\\F'_z=q(\gamma V'_xB_y-V'_yB_x + \gamma vB_y)\end{matrix}\right.

La force \vec F' est de la forme :

\vec F' = q\vec E' + q\vec V' \times \vec B'

avec ici \vec E' champ électrique de composantes \gamma v\begin{pmatrix}0  \\ -B_z \\ B_y\end{pmatrix} et \vec B' champ magnétique de composantes \begin{pmatrix}B_x \\ \gamma B_y \\ \gamma B_z\end{pmatrix} .

Ainsi, le fait de changer de référentiel a légèrement modifié les composantes du champ magnétique orthogonales au déplacement, et a fait apparaître un champ électrique. Ce champ est aussi un effet relativiste du changement de référentiel.

\vec E' = \gamma \vec v \times \vec B

Si on combine les exemples 2 et 3, on obtient les transformations d'un champ électro-magnétique (\vec E,\vec B)  :

\left\{\begin{matrix} E'_x=E_x\\ E'_y=\gamma(E_y-vB_z)\\ E'_z=\gamma(E_z+vB_y)\\ B'_x=B_x\\ B'_y=\gamma(B_y+\frac{v}{c^2}E_z)\\ B'_z=\gamma(B_z-\frac{v}{c^2}E_y) \end{matrix}\right.

ou encore, en désignant par \vec E_{//} et \vec B_{//} les composantes des champs parallèles au sens du déplacement du référentiel \mathbb R' , et par E_{\bot} et \vec B_{\bot} les composantes orthogonales :

\left\{\begin{matrix} \vec E'_{//} = \vec E_{//}\\ \vec B'_{//} = \vec B_{//}\\ E'_{\bot} = \gamma(E_{\bot} + \vec v \times \vec B)\\ B'_{\bot} = \gamma(B_{\bot} - {\vec v \over c^2} \times E) \end{matrix}\right.

Tout ceci fait intervenir deux champs \vec{E},\vec{B} classiques qui lors d'un changement de référentiel se 'transforment' l'un dans l'autre sans pour cela se mettre clairement sous la forme de quadrivecteur comme l'énergie impulsion etc. Par contre les équations de Maxwell prennent une forme relativiste et  \left( \frac{V}{c},\vec{A}\right) va se transformer comme doit le faire un quadrivecteur ce qui fait dire à Feynman que si dans les champs électromagnétique il fallait mettre une hiérarchie c'est de considérer d'abord les grandeurs quadrivecteurs. Il faut donc essayer de formuler les équations de Maxwell avec des opérateurs et des champs vectoriels ou tensoriel à 4 dimensions.

Optique relativiste

On utilise en optique relativiste les quadrivecteurs de la forme ({\omega \over c},\vec{k}) , où ω est la pulsation de l'onde, et \vec{k} le vecteur d'onde indiquant la direction de propagation de l'onde et de module ω/c. Ce quadrivecteur est l'équivalent pour une onde électromagnétique du quadrivecteur ({E \over c}, \vec{p}) énergie-impulsion pour une particule, multiplié par la constante de Planck {h \over 2\pi} = \hbar . En effet, la dualité onde-particule attribue à une onde une énergie E = h\nu = {h \over 2\pi} \omega = \hbar \omega , et une quantité de mouvement dont le module est p = {E \over c} = \hbar {\omega \over c} = \hbar  k .

La transformation d'un référentiel à l'autre de ce quadrivecteur explique les deux effets suivants :

Page générée en 0.206 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise