On entend souvent par calcul numérique un ensemble de calculs qui sont réalisés sur un système informatique, encore appelé système numérique (ou ordinateur). On réalise généralement des calculs numériques pour simuler par exemple des phénomènes naturels tels que déformations de matériaux sous l'effet de contraintes extérieures, etc.; autant de domaines pour lesquels le calcul à la main (sur une simple feuille de papier) prendrait des heures et des milliers et des milliers de feuilles de papier (Voir aussi : Simulation informatique, Ingénierie numérique).
Cependant il s’agit d’une simplification pratique du domaine d’étude qui est plus vastement abordé de façon théorique et mathématique dans l’analyse numérique.
Le champ d’application de l’analyse numérique précède de nombreux siècles l’invention des calculatrices modernes. En fait, bon nombre de mathématiciens du passé étaient préoccupés par l’analyse numérique, comme en témoignent évidemment les noms des algorithmes les plus importants tels que la méthode de Newton, l’interpolation lagrangienne, l’élimination de Gauss-Jordan ou la méthode d'Euler.
Pour faciliter les calculs manuels, de volumineux livres ont été édités, contenant des formules et tables de données telles que les points d’interpolation et coefficients de fonctions. Les plus connus sont les tables de logarithmes et les tables trigonométriques. À l’aide de ces tables (souvent calculées avec 5 à 10 chiffres significatifs, voire plus pour certaines fonctions), on pouvait rechercher les valeurs à utiliser dans les formules données, et obtenir de très bonnes estimations de certaines fonctions. Un travail fondamental dans ce domaine est l'ouvrage Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables publié par le NIST en 1964, et édité par Milton Abramowitz et Irène Stegun. Ce livre de plus de 1 000 pages comprend un très grand nombre de formules et fonctions usuelles, et leurs valeurs en de nombreux points. Il est moins destiné au calcul à la main (les tables ne disposant pas d'aide au calcul, comme les différences tabulaires) qu'à la mise au point de programmes sur ordinateur, en facilitant les tests et en fournissant de nombreuses formules.
La règle à calcul représentait aussi une application pratique de ces anciennes tables numériques pour l’approximation rapide (généralement limitée à 3 ou 4 chiffres significatifs) de certaines fonctions continues à variable réelle simples (comme les fonctions trigonométriques, logarithmiques et exponentielles, et l’approximation rapide de la multiplication). Elle fut longtemps en usage notamment dans l’ingénierie, jusqu’au début des années 1980, avant que les calculatrices dites scientifiques ne soient largement répandues et accessibles au grand public à un prix modique.
La calculatrice mécanique a aussi été développée comme un outil pour le calcul manuel dès son invention, liée au développement de l’horlogerie, notamment dans les applications commerciales (comme la caisse enregistreuse largement diffusée depuis le XIXe siècle). Ces calculatrices ont évolué en ordinateurs électroniques dans les années 1940 grâce à la découverte des propriétés discrètes de la jonction P-N des semi-conducteurs (et son application dans le transistor), et on a vite découvert que ces ordinateurs seraient également utiles à des fins administratives. Mais l’invention de l’ordinateur a aussi influencé et largement étendu le champ d’application de l’analyse numérique, puisque dorénavant des calculs bien plus longs et compliqués peuvent être réalisés.