Barrière hémato-encéphalique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Histoire de la découverte de la barrière hémato-encéphalique

Max Lewandowsky

La première preuve d'existence pour la barrière hémato-encéphalique vient du chimiste allemand Paul Ehrlich. En 1885, il constata qu'après injection de colorants vitaux solubles dans l'eau dans la circulation sanguine de rats, tous les organes étaient colorés, sauf le cerveau et la moelle épinière.

En 1904, il en tira une conclusion fausse, c'est-à-dire que la cause de cette découverte était une faible affinité du tissu cérébral pour le colorant injecté.

En 1909, Edwin Goldmann, un ancien collaborateur de Paul Ehrlich, injecte par intraveineuse le colorant sythétisé cinq ans auparavant par Ehrlich, le bleu de trypan, un colorant azoïque. Là-dessus, il remarque que le plexus choroideus, contrairement au tissu cérébral qui l'entoure, est coloré de façon marquée. En 1913, il injecte la même substance directement dans le liquide cérébro-spinal de chiens et lapins. Goldmann en conclut que le liquide cérébro-spinal et le plexus choroideus ont une fonction importante dans le transport des nutriments du système nerveux central. De plus, il soupçonne une fonction de barrière contre les substances neurotoxiques.

En 1898, Arthur Biedl et Rudolf Kraus mènent des expériences avec l’acide gallique. Ce composé se révèle non-toxique par application dans la circulation générale. Mais son injection dans le cerveau s'avère neurotoxique, avec des réactions pouvant aller jusqu'au coma.

Max Lewandowsky utilise en 1900 pour des expériences semblables le ferrocyanure de potassium et arrive à des conclusions semblables à celles de Biedl et Kraus. Lewandowsky utilise à cette occasion pour la première fois le concept de « barrière hémato-encéphalique ».

Charles Smart Roy et Charles Scott Sherrington en 1893 à Cambridge

En 1890, Charles Smart Roy et le futur prix Nobel de médecine Charles Scott Sherrington postulent que le cerveau possède un mécanisme intrinsèque pour faire correspondre l'irrigation vasculaire aux variations locales de l'activité :

« Le cerveau posssède un mécanisme intrinsèque par lequel l'apport vasculaire peut être varié localement en correspondance avec les variations locales d'activité fonctionnelle. »

Lina Stern, le premier membre féminin de l'académie des sciences de Russie, a apporté de réelles contributions à la recherche sur la barrière hémato-encéphalique, qu'elle désigna comme telle en 1921.

La différence entre la barrière hémato-encéphalique et la barrière sang-liquide cérébro-spinal fut prise en compte dans les années 1930 par Friedrich Karl Walter et Hugo Spatz. Ils ont posé que le flux de liquide cérébro-spinal était par lui-même insuffisant pour assurer l'échange de gaz du système nerveux central.

Bien que les expériences de Goldmann et Ehrlich eussent indiqué l'existence d'une barrière entre la circulation sanguine et le système nerveux central, ce n'est que dans les années 1960 que les derniers doutes concernant son existence ont été dissipés. Un point critique dans l'expérience de Goldmann consistait en ce que le sang et le liquide cérébro-spinal, les deux liquides dans lesquels il avait injecté des colorants, diffèrent considérablement, ce qui pouvait influer sur le comportement de la diffusion et l'affinité pour le tissu nerveux. La compréhension a été rendue encore plus difficile par la trouvaille expérimentale que les colorants azoïques basiques coloraient le tissu nerveux, donc franchissaient la barrière, tandis que les colorants acides ne le faisaient pas. Ulrich Friedemann en conclut que c'étaient les propriétés électrochimiques des colorants qui en étaient responsables : les capillaires cérébraux étaient perméables aux substances neutres ou de pH supérieur au sang, et imperméables aux autres. Mais par la suite, quand un grand nombre de substances furent testées pour leur capacité à franchir la barrière hémato-encéphalique, cette hypothèse se révéla insuffisante. Dans les modèles d'explication suivants, on introduisit et soumit à discussion tout une série de paramètres, comme la masse molaire, la taille de la molécule, les affinités de liaison, les constantes de dissociation, le caractère lipophile, la charge électrique, et leurs diverses combinaisons.

La compréhension actuelle de la structure de base de la barrière hémato-encéphalique est fondée sur des vues au microscope électronique de cerveaux de souris, que l'on arriva à faire à la fin des années 1960. Thomas S. Reese et Morris J. Karnovsky ont injecté à leurs sujets animaux pendant leurs expériences de la peroxydase de raifort (HRP) par voie intraveineuse. Ils n'ont trouvé l'enzyme, au microscope électronique, que dans la lumière des capillaires et dans des vésicules micropinocytaires au sein des cellules endothéliales. Â l'extérieur des endothéliums, dans la matrice extracellulaire, ils n'ont pas trouvé de peroxydase. Ils en ont conclu que les jonctions serrées entre les cellules endothéliales empêchent le passage vers le cerveau.

Page générée en 0.158 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise