Les diatomées sont des plantes unicellulaires. Elles sont donc autotrophes et utilisent l'énergie de la lumière grâce à la chlorophylle a et la chlorophylle c contenues dans leurs chloroplastes par photosynthèse. Les chlorophylles sont situés dans les chloroplastes, qui peuvent être présentés comme de petites granules dispersés dans la cellule ou avoir une forme de plaque ou de bande ou d'étoile et sont d'un nombre variable (entre un et plusieurs dizaines). Par la présence de pigments de carotènes et de xanthophylles (dont la fucoxanthine), les chloroplastes sont jaunes, vert olive ou bruns.
Certaines espèces peuvent malgré tout présenter une hétérotrophie plus ou moins importante. Celle-ci peut être facultative et temporaire lorsque la diatomée est en présence de molécules organiques assimilables et que l'éclairement est insuffisant. Quelques rares espèces (notamment en eaux eutrophes et peu éclairées des zones littorales et estuariennes) ne sont cependant pas douées de photosynthèse et ont donc une hétérotrophie obligatoire.
Comme toute cellule, les diatomées possèdent une membrane organique périphérique à leur cytoplasme, un noyau, et les différents organites nécessaires à son fonctionnement (mitochondries, systèmes membranaires et tubulaires intracytoplasmique… ). La cellule des diatomées centrales est en partie occupée par une vacuole dont la densité du volume est proche de celle de l'eau ambiante. La plupart des diatomées pennales possèdent deux vacuoles situées de part et d'autre de la zone cytoplasmique médiane entourant le noyau. Des globules lipidiques sont en outre présents en nombre variable, ceux-ci servent de réserve mais peuvent aussi refléter un mauvais état physiologique de la cellule ; les lipides représentent généralement 4 à 8 % du poids sec mais peuvent parfois en représenter 40 % chez certaines espèces ou dans certaines situations.
Les diatomées excrètent des substances mucilagineuses à travers des pores spéciaux. Ces excrétions jouent un rôle important dans leur locomotion, leur flottaison (pour les espèces planctoniques), leur reproduction et dans la constitution et la protection des colonies. Certaines peuvent émettre des filaments de chitine. Les diatomées peuvent parfois secréter des molécules susceptibles d'agir sur d'autres organismes (bactéricides, antibiotiques, substances toxiques pour les œufs d'invertébrés marins, voire des toxines nocives pour l'Homme).
À moins de posséder un raphé sur la valve en contact avec le substrat, les diatomées pennales peuvent se mouvoir de manière autonome. Elles sont notamment attirées par la lumière sauf si cette dernière est trop intense. Les mécanismes permettant cette locomotion ne sont pas totalement élucidés mais il semble néanmoins qu'une substance mucilagineuse adhère au substrat et s'écoule à travers le raphé dans la direction opposée au mouvement. Les diatomées les plus rapides peuvent atteindre des vitesses de 20 μm/s soit 7,2 cm/h. Sans avant ni arrière, les diatomées inversent périodiquement le sens du mouvement généralement.
Les diatomées centrales n'ont pas de raphé et ne peuvent donc se déplacer sur un support.
La multiplication cellulaire végétative est la principale méthode de multiplication des diatomées ; elle ne fait pas intervenir de processus sexué. Lorsque les conditions sont favorables à leur prolifération, les diatomées se multiplient par bipartition (la cellule mère donne deux cellules filles), ce qui peut se faire de manière très rapide.
Cette bipartition est particulière : chaque diatomée fille conserve une des thèques de la diatomée mère comme épithèque propre, et reconstitue la thèque manquante. Les deux thèques n'ayant pas la même taille, les diatomées filles sont de tailles différentes : celle qui est issue de la grande thèque a la même taille que la diatomée mère, tandis que celle issue de la petite thèque est légèrement plus petite. Ce processus se reproduit à chaque cycle.
Il y a d'abord formation de l'hypocingulum de chacune des deux nouvelles thèques. La division du noyau et du cytoplasme est suivie par la formation de deux hypovalves qui sont totalement silicifiées dans les dix à vingt minutes suivant la division. Une fois les deux frustules achevés, les deux cellules filles se séparent, ou restent associées chez les espèces coloniales.
La manière dont la paroi siliceuse est élaborée n'est pas complètement élucidée mais on peut schématiquement l'expliquer ainsi. La cellule extrait les traces d'acide silicique du milieu. Un système membranaire particulier forme des vésicules sous la membrane cellulaire dans lesquelles est polymérisé l'acide silicique et où la silice s'accumule. Leur nombre va croissant au fur et à mesure de la quantité de silice produite, les vésicules finissent par fusionner et les néoformations du frustule sont alors transférés à l'extérieur. À la fin de la formation du frustule, une partie du cytoplasme reste associé à la partie siliceuse pour former une mince couche organique, tandis que se reforme en dessous une nouvelle membrane cellulaire.
Lors de la multiplication asexuée, chaque nouvelle thèque des deux cellules filles étant une hypothèque, une des cellules filles est plus petite que la cellule mère induisant une diminution progressive de la taille des générations successives de diatomées (la taille est donc un critère d'identification à utiliser prudemment). À partir d'une taille minimale (30 % de la taille initiale), la reproduction intervient entre deux diatomées afin de générer des individus de taille normale, trois ou quatre fois, voire huit à dix fois plus grands. Le processus est complexe et diffère chez les diatomées centrales et les pennales.
Chez les diatomées centrales, les cellules se transforment les unes en gamètes femelles, les autres en gamètes mâles. Les gamètes mâles sont munis d'un flagelle avec lequel ils s'introduisent dans les diatomées gamètes femelles. Chez les diatomées pennales, la fécondation se fait par cystogamie : il y a d'abord adhésion des deux diatomées, facilitée par du mucilage. Chacune évolue alors en un ou deux gamètes actifs (mâles, sans flagelle) ou passifs (femelles) qui fusionnent ensuite par divers moyens.
Dans tous les cas, l'œuf résultant de la fusion des gamètes, appelé auxospore, s'entoure d'une épaisse paroi mucilagineuse et grossit considérablement avant de secréter un frustule et donc devenir une nouvelle diatomée de grande taille.
Si les conditions environnementales deviennent défavorables (diminution de l'éclairement, de la température, de la teneur en sels nutritifs… ), de nombreuses espèces de diatomées centrales (surtout planctoniques) et quelques diatomées pennales, forment des structures de résistance, les hypnospores ou spores de résistance, qui peuvent tenir un état de vie ralenti durant quelques semaines.
Ces structures sont formées par contraction du cytoplasme en une masse dense, de couleur foncée, qui secrète une membrane silicifiée, constituée de deux valves identiques ou différentes. Ces spores peuvent rester dans le frustule parental ou non et peuvent ressembler à la diatomée initiale ou avoir une morphologie différente. Lors de la germination, le spore réinvestit le frustule parental ou en secrète un nouveau.
Des cellules de très petite taille peuvent se former à l'intérieur du frustule de certaines diatomées centrales, au nombre de 8 à 128. La nature de ces microspores est inconnue et fait l'objet de plusieurs théories.
De nombreuses espèces vivent isolées, soit libres soit fixées par du mucilage à un support (inerte ou vivant) mais il existe également des espèces coloniales aussi bien chez les diatomées centrales que pennales. À la suite de la multiplication végétative, les cellules filles restent associées, soit grâce à des substances mucilagineuses ou à des filaments de chitine, soit par l'intermédiaire de dents, d'épines ou de soies, afin de former progressivement une colonie. Selon l'espèce et le mode de liaison, la colonie peut prendre une multitude de formes (ruban, étoile, chaînette, éventail, « arbuste », zigzag ou tube muqueux à l'intérieur duquel les diatomées sont mobiles). Chaque diatomée de la colonie reste autonome et peut survivre si la colonie est fragmentée.
Plusieurs hypothèses sont avancées quant à l'avantage de ces colonies : influence sur la flottabilité des espèces planctoniques et sur l'absorption des sels nutritifs, défense contre le broutage et le zooplancton.
L'aptitude de certaines diatomées à former des constructions pluricellulaires a amené certains diatomistes du XIXe siècle (par exemple, Jean Deby en 1888) à proposer que les diatomées étaient fondamentalement des organismes pluricellulaires.