Atmosphère de Mars - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Évolution

Les récentes découvertes faites à partir des observations du spectro-imageur OMEGA de la sonde Mars Express ont permis de proposer une échelle des temps géologiques alternative, fondée sur les périodes de formation des roches hydratées observées à la surface de Mars.

  • Le Phyllosien (du nom des phyllosilicates hydratés observés sur les terrains les plus anciens) : cette première ère martienne serait apparue peu de temps après la formation de la planète, il y a 4,5 milliards d’années. Pendant 300 millions d’années, le climat sur Mars aurait été suffisamment chaud et humide et la pression atmosphérique suffisamment forte pour qu'il y ait de l’eau liquide.
  • Le Theiikien (du nom grec "theiikos" signifiant sulfurique) : cette deuxième ère aurait eu lieu entre 4,2 et 3,8 milliards d’années. Au cours de cette période, un enchaînement d’événements aurait profondément modifié le climat martien, le rendant sec et acide, favorable à la formation des sulfates. En premier lieu, la dynamo martienne aurait cessé de fonctionner, privant la planète de son bouclier magnétique. Dès lors, les vents solaires auraient progressivement arraché à Mars son atmosphère. Puis d’importantes éruptions volcaniques à l’origine de la formation du dôme de Tharsis et du remplissage des plaines du nord auraient éjecté de grandes quantités de soufre dans l’atmosphère.
  • Le Siderikien (du nom grec "siderikos" signifiant ferrique) : cette troisième et dernière ère martienne aurait débuté il y a 3,8 ou 3,5 milliards d’années et se poursuivrait encore aujourd’hui. Durant cette période, l’atmosphère martienne, devenue très ténue et pauvre en vapeur d’eau, aurait lentement oxydé un sol martien riche en fer, donnant à la planète sa couleur rouge.

Conditions atmosphériques & climatiques

Historique des observations

Giancomo Miraldi découvrit en 1704 que la calotte polaire sud n'était pas centrée sur l'axe de rotation de Mars. Durant l'opposition de 1719, Miraldi observa deux calottes polaires et une variation dans le temps de leurs étendues respectives.

William Herschel a été le premier à déduire la faible densité de l'atmosphère martienne dans sa publication de 1784 On the remarkable appearances at the polar regions on the planet Mars, the inclination of its axis, the position of its poles, and its spheroidal figure; with a few hints relating to its real diameter and atmosphere. Quand Mars passa devant deux étoiles de faible intensité, Herschel constata que leurs brillances n'étaient pas affectées par l'atmosphère de la planète. Il conclut alors qu'il y avait trop peu d'atmosphère autour de Mars pour interférer avec leur lumière.

Honoré Flaugergues découvrit en 1809 des « nuages jaunes » sur la surface de Mars. C'est la première observation connue des tempêtes de poussières martiennes.

Paléoclimatologie martienne

Avant d'aborder un examen sérieux de la paléoclimatologie martienne, certains termes doivent être définis, spécialement les termes étrangers. Il y a deux systèmes d'échelles de temps pour Mars. La première, fondée sur la densité des cratères, compte trois ères, le Noachien, l'Hespérien, et l'Amazonien. La seconde, fondée sur les minéraux, comprend également trois ères, le Phyllosien, le Theiikien, et le Sidérikien.

Des observations et des modèles fournissent des informations non seulement à propos des conditions atmosphériques et climatiques actuelles mais aussi sur le climat passé. L'atmosphère de l'ère noachienne a souvent été considérée comme riche en carbone. Mais des observations récentes ont montré, grâce aux dépôts argileux, qu'il y avait peu de formations carbonatées dans les argiles datant de cette époque.

La découverte de goethite par Spirit a mené à la conclusion que les conditions climatiques dans le passé lointain de Mars permettaient l'écoulement de l'eau sur sa surface. La morphologie de certains cratères d'impact indique que le sol était humide lors de l'impact.

Temps

La température et la circulation atmosphérique martienne varient d'année en année. Mars n'a pas d'océan, une des sources des variations de la température sur Terre. Les données de la caméra de Mars Orbital, commençant en mars 1999 et couvrant une période de 2,5 années martiennes, montrent que le temps martien tend à être plus répétitif, donc plus prévisible que celui de la Terre. Si un évènement se produit à un moment donné durant une année, les données disponibles indiquent qu'il y a de fortes possibilités que cet évènement se reproduise l'année suivante au même lieu.

Le 29 septembre 2008, la sonde Phoenix lander prit des photos de neige tombant à partir de nuages se trouvant à 4,5 km au-dessus de son point d'atterrissage près du cratère Heimdall. Cette neige se vaporisa avant d'atteindre le sol ; ce phénomène s'appelle virga.

Nuages

Les vents soulèvent des particules d'argile de taille inférieure à 100 micromètres. En faibles quantités, celles-ci donnent au ciel sa couleur orange ocre. On observe peu fréquemment des tempêtes qui peuvent obscurcir tout ou partie de la planète.

Il existe également des nuages d'eau et de dioxyde de carbone dont l'aspect est très proche de celui des cirrus. Certains nuages sont si fins qu'ils ne peuvent être aperçus que lorsqu'il reflètent la lumière du Soleil dans l'obscurité. En ce sens, ils sont proches des nuages noctulescents de la Terre.

Température

La température moyenne sur Mars est de -63 °C (à comparer aux 15 °C sur Terre). Cette température est causée par la faible densité de l'atmosphère qui fait que l’effet de serre induit n'est que de 3 kelvin (contre 33 K pour la Terre). En outre, la distance avec le Soleil étant 1,5 fois plus importante, Mars reçoit 57 % d'énergie solaire en moins que la Terre.

Toutefois, si la température au sol peut descendre à -143 °C en hiver aux pôles, elle peut atteindre 27 °C en plein été aux basses latitudes. À noter également que la faible inertie de stockage de la chaleur, notamment due à l’absence d’océan et à une atmosphère ténue, induit de fortes variations thermiques entre le jour et la nuit : de -89 °C à -24 °C sur le site de Viking 1 (Chryse Planitia).

Saisons
Cycle des saisons martiennes.

L’inclinaison de l'axe de Mars est de 25,19°, soit très proche des 23,45° de celle de la Terre. Mars connait donc des saisons opposées dans les hémisphères nord et sud. Avec une excentricité orbitale de 0,0934 (0,0167 pour la Terre), l'orbite de Mars est fortement elliptique et sa distance au Soleil varie entre un maximum, l'aphélie, de 249,228 millions de kilomètres et un minimum, le périhélie, de 206,644 millions de kilomètres. En outre, le périhélie coïncide avec le solstice d'hiver boréal et l'aphélie, avec le solstice d'été boréal. Ceci a pour effet de provoquer des différences dans la durée et l'intensité des saisons observées aux deux hémisphères. Au périhélie par exemple, le pôle sud est orienté vers le Soleil et reçoit 40 % d'énergie en plus que le pôle nord à l'aphélie.

Saison Jours martiens
(sur Mars)
Jours terrestres
(sur Terre)
Hémisphère nord Hémisphère sud
Printemps Automne 193,30 92,764
Été Hiver 178,64 93,647
Automne Printemps 142,70 89,836
Hiver Été 153,95 88,997

Les hivers sont relativement "doux" et courts dans l’hémisphère nord et longs et froids dans l’hémisphère sud. De même, les étés sont longs et frais au nord et courts et chauds au sud. Les écarts de températures sont ainsi plus élevés au sud qu’au nord.

Cycle glaciaire

L'obliquité de la planète, qui n'est pas stabilisée par la présence d'un satellite massif comme c'est le cas pour la Terre, suit un régime chaotique selon une périodicité d’environ 120 000 ans. Elle oscille entre 0° et 60° et connait des phases relativement stabilisées entrecoupées de changements brusques, ce qui bouleverse complètement le climat martien.

Des recherches poussées, assistées d'un modèle climatique général relativement simplificateur, montrent l'existence probable de tendances climatiques de long terme : en régime de forte obliquité, la glace s'accumule dans quelques régions équatoriales isolées ; en régime de faible obliquité, ces calottes fondent et la glace s'accumule aux hautes latitudes sud et nord, de façon généralisée. On retrouve alors une dynamique pseudo-glaciaire-interglaciaire par analogie à la Terre. En fait, ces phases sont plus marquées sur Mars et pourraient expliquer pourquoi d'immenses étendues du sous-sol martien aux hautes latitudes sont constituées d'un mélange de glace et de régolithe dans des proportions étonnantes. Globalement, ces résultats, bien qu'imprécis et tributaires de postulats forts, sont compatibles avec les données et hypothèses géologiques et chimiques issues des missions spatiales successives.

Vents

La surface de Mars a une faible inertie thermique, ce qui signifie qu'elle chauffe rapidement quand le Soleil l'éclaire. Sur Terre, le vent se crée là ou il y a des changements brutaux d'inertie thermique, tel que de la mer vers la terre. Il n'y a pas de mers sur Mars, mais il y a des régions où l'inertie thermique du sol change, créant des vents matinaux et du soir apparentées à la brise marine terrestre. Le projet Antares "Mars Small-Scale Weather" (MSW) a récemment découvert quelques faiblesses dans le modèle climatique actuel dû au paramètre des sols. Ces faiblesses sont en train d'être corrigées et devraient conduire à des évaluations plus précises.

À basses latitudes, la circulation de Hadley domine, et est presque le même processus, qui, sur Terre, génère les alizés. À hautes latitudes une série de régions hautes et basses pressions, appelées ondes de pression baroclines, domine le temps. Mars est plus sèche et plus froide que la Terre, en conséquence la poussière soulevée par ces vents tend à rester dans l'atmosphère plus longtemps que sur Terre puisqu'il n'y a pas de précipitations pour la nettoyer (sauf la neige de CO2).

Une des différences majeures entre les circulations de Hadley martienne et terrestre est leur vitesse.

Tempêtes cycloniques

Des tempêtes cycloniques similaires aux cyclones sur Terre ont été détectées pour la première fois par le programme de cartographie de Viking puis par plusieurs sondes et télescopes. Les images les présentent de couleur blanche à la différence des tempêtes de sable. Ces tempêtes tendent à apparaitre durant l'été dans l'hémisphère nord et seulement aux hautes latitudes. Les spéculations tendent à montrer que ces tempêtes sont dues aux conditions climatiques uniques existant au pôle nord.

Hubble, Cyclone polaire sur Mars

Pression atmosphérique

La pression atmosphérique sur Mars est de 600 Pa en moyenne (soit 6,3 mbar), ce qui est beaucoup moins que les 101 300 Pa sur Terre. Une des conséquences est que l'atmosphère de Mars réagit plus rapidement à une énergie donnée que l'atmosphère terrestre. Toutefois elle peut varier lorsque les gaz contenus dans la glace des pôles se subliment (notamment le dioxyde de carbone). En outre, la pression atmosphérique est aussi fonction de l'altitude.

Bien que les températures sur Mars puissent dépasser les 0 °C, l'eau liquide est instable car la pression est inférieure au point triple de l'eau et l'eau glacée se sublime en vapeur d'eau. Une exception à cette règle est le cratère d'impact d'Hellas Planitia, le plus grand cratère de Mars. Il est si profond que la pression atmosphérique est de 1 155 Pa à son point le plus bas, ce qui est au-dessus du point triple, donc si la température dépassait les 0 °C, de l'eau liquide pourrait s'y trouver.

Circulation atmosphérique

Photomontage de la planète Mars avant (à gauche) et pendant (à droite) la tempête de septembre 2001.

Hormis le courant-jet qui parcoure la mésosphère martienne, il est à noter qu'il n’existe qu’une seule cellule de Hadley sur Mars mais beaucoup plus marquée en altitude et en amplitude, joignant les deux hémisphères et qui s’inverse deux fois par an.

De même, vers la fin du printemps austral, quand Mars est au plus près du Soleil, des tempêtes locales et parfois régionales apparaissent. Exceptionnellement, ces tempêtes peuvent devenir planétaires et durer plusieurs mois comme ce fut le cas en 1971 et, dans une moindre mesure, en 2001. De minuscules grains de poussière sont alors soulevés, rendant la surface de Mars quasiment invisible. Ces tempêtes de poussière naissent en général au-dessus du Bassin d'Hellas. Les importantes différences thermiques observées entre le pôle et les régions avoisinantes provoquent des vents violents à l'origine du soulèvement de fines particules dans l'atmosphère. Lors de tempêtes globales, ce phénomène provoque d'importantes modifications climatiques : les poussières en suspension absorbent le rayonnement solaire, réchauffant ainsi l'atmosphère et réduisant dans le même temps l'insolation au sol. Ainsi, lors de la tempête de 2001, la température atmosphérique s'est élevée de 30 °C alors que la température au sol s'est abaissée de 10 °C.

Changement climatique

Pôle sud, MGS 1999, NASA

Des changements se sont produits autour du pôle sud de Mars (Planum Australe) ces dernières années. En 1999, le Mars Global Surveyor photographia des fosses dans les couches de dioxyde de carbone gelé du pôle sud martien. À cause de leur forme saisissante et de leur orientation, ces fosses sont connues comme des éléments appelés swiss cheese features. En 2001, le vaisseau photographia à nouveau ces fosses et remarqua qu'elles s'étaient agrandies, se retirant de 3 mètres en une année martienne.

Ces caractéristiques géologiques sont causées par l'évaporation de la glace sèche exposant la couche de glace d'eau inerte.

Des observations récentes indiquent que le pôle sud martien continue de se sublimer. Ces fosses continuent de s'agrandir au même rythme de 3 mètres par année martienne. Un article de la NASA indique que ces fosses suggèrent un "changement climatique en progrès" sur Mars.

Ailleurs sur la planète, les régions de basses altitudes contiennent plus de glace d'eau.

Théories d'attribution

Causes du changement polaire
Le rayonnement solaire, cause du réchauffement planétaire de Mars ?

En dépit de l'absence de données échelonnées dans le temps de la température martienne, K.I. Abdusamatov a proposé que parallèlement au réchauffement climatique — observé simultanément sur Mars et sur la Terre, et quelques sceptiques du réchauffement climatique pensent que c'est la preuve que l'homme n'est pas la cause de l'actuel changement sur Terre — les variations solaires pourraient être la cause directe de cette élévation de la température."

D'autres scientifiques considèrent que les variations observées pouvaient être causées par des irrégularités de l'orbite de Mars ou une combinaison des effets solaires et orbitaux.

Page générée en 0.171 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise