Anneau (mathématiques) - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Exemples

  • L'ensemble des entiers relatifs, \mathbb Z muni de l'addition (la loi +) et de la multiplication (la loi ) est un anneau commutatif unitaire.
  • L'ensemble des entiers congruents modulo un nombre entier donné p est un anneau commutatif unitaire pour la loi provenant la congruence ; il est noté \mathbb Z/p\mathbb Z .
  • Ainsi \mathbb Z/2\mathbb Z pour les lois + et * est un anneau à deux éléments. 0 correspond aux nombres pairs et 1 aux nombres impairs. On retrouve alors les résultats suivants :
    • Un pair plus un pair est pair (0+0=0).
    • Un impair plus un pair est impair (0+1=1+0=1).
    • Un impair plus un impair est pair (1+1=0).
    • Un pair fois un entier quelconque est pair (0*x=0).
    • Un impair fois un impair est impair (1*1=1).
  • Un corps est un cas particulier d'anneau (unitaire) pour lequel tous les éléments non nuls sont inversibles pour la loi (.).
    • En particulier, l'ensemble des nombres rationnels, \mathbb Q , l'ensemble des nombres réels, \mathbb R , l'ensemble des nombres complexes, \mathbb C , munis de l'addition et de la multiplication usuelles sont des anneaux (unitaires) commutatifs.
    • L'ensemble des nombres décimaux, \mathbb D , munis de l'addition et de la multiplication usuelles est un anneau (unitaire) commutatif qui n'est pas un corps.
    • L'ensemble des réels s'écrivant a + b\sqrt{2} , où a et b sont des entiers relatifs, muni de l'addition et de la multiplication usuelles est un anneau commutatif, mais pas un corps.
  • Les endomorphismes d'un espace vectoriel (applications linéaires de l'espace vers lui-même) forment un anneau, avec l'addition de fonction pour la loi +, et la composition pour la loi . L'identité est un élément neutre pour , donc c'est un anneau unitaire. Il n'est pas commutatif en général. C'est une grande source de contre-exemples à des affirmations fausses sur les anneaux.
    • Plus généralement les endomorphismes d'un groupe abélien forment un anneau.
  • L'ensemble des matrices 2 × 2, à coefficients réels, muni de l'addition et de la multiplication est aussi un anneau non commutatif unitaire, isomorphe à l'anneau des endomorphismes de l'espace vectoriel \mathbb R^2 .
  • L'ensemble des polynômes à coefficients dans un anneau commutatif est aussi un anneau commutatif.
  • L'ensemble des applications d'un ensemble X à valeurs dans un anneau, muni des lois héritées de l'anneau (c'est-à-dire (f+g)(x)=f(x)+g(x) et (f*g)(x)=f(x)*g(x)) forme un anneau noté AX.

Anneau nul

L'ensemble à un seul élément {0} muni des opérations 0+0=0 et 0.0=0 est un anneau, appelé anneau nul.

La notion de pseudo-anneau de carré nul est plus intéressante : on dit qu'un pseudo-anneau A est de carré nul si le produit de deux éléments de A est toujours nul. Si le pseudo-anneau est unitaire, il est alors réduit à 0 car pour tout élément x de A, on a : x=1.x=0. Tout groupe abélien (A, +) peut être muni d'une structure de pseudo-anneau nul en posant x.y=0.

Anneau opposé

L'anneau opposé Aop d'un anneau A possède le même groupe additif sous-jacent que A et sa multiplication est effectuée dans l'ordre opposé : si l'on note \cdot_A et \cdot_{A^{op}} les multiplications respectives de A et Aop, on a

 a\cdot_{A^{op}} b = b\cdot_A a

Il est clair que si A est commutatif, A = Aop.

Sous-anneaux

Une partie B d'un anneau A est un sous-anneau de (A, +, .) si :

  • (B, +) est un sous-groupe de (A,+)
  • B est stable pour la loi .
  • S'il est requis que les anneaux soient unitaires (cela dépendant de la définition utilisée), alors le sous anneau doit lui être aussi unitaire et son 1 doit provenir du 1 de l'anneau initial (1A = 1B), ce qui équivaut à 1_A\in B .
Un sous-anneau B est un anneau pour les opérations + et . restreintes à B.

Exemples

Dans le cas unitaire

  • Dans l'anneau commutatif (unitaire) Z, 2 Z est un idéal, qui n'a pas d'élément unité, ce n'est donc pas un anneau et encore moins un sous-anneau de Z.
  • Dans l'ensemble des matrices carrées M2 (à coefficients dans R par exemple), anneau non-commutatif unitaire, l'ensemble des matrices de la forme :
\begin{bmatrix}  x&0\\ 0&0 \end{bmatrix} (x\in R) est un anneau unitaire dont l'élément neutre pour la multiplication \begin{bmatrix}  1&0\\ 0&0 \end{bmatrix} est différent de la matrice identité \begin{bmatrix}  1&0\\ 0&1 \end{bmatrix} Ce n'est donc pas un sous-anneau de M2, ni de l'anneau des matrices diagonales.

Dans le cas non-unitaire

  • 2 Z est cette fois-ci un (pseudo-)anneau et c'est bien un sous anneau de Z.
  • A=\Z ^ {2} est un anneau unitaire, et l'ensemble B des couples (0 ; n) ayant la première composante nulle est un sous anneau qui a la particularité d'être unitaire mais de ne pas avoir la même unité que l'anneau A=\Z ^ 2 . Ce dernier a 1A = (1;1) comme unité et le sous anneau a pour unité 1B = (0;1).

Construction de sous-anneaux

  • Éléments entiers sur un sous-anneau B : dans un anneau commutatif unitaire intègre A contenant un sous-anneau B, un élément x ∈ A est entier sur B si et seulement si x est solution d'une équation P(x) = 0P est un polynôme unitaire à coefficient dans B.
L'anneau Z des entiers relatifs est un sous-anneau de l'anneau Q des rationnels. Les seuls éléments de Q entiers sur Z sont les entiers relatifs.
L'anneau Z des entiers relatifs est un sous-anneau de l'anneau Q[i] des complexes s'écrivant a + ib, a et b étant des rationnels . Les éléments de Q[i] entiers sur Z sont les complexes s'écrivant a + ib, a et b étant des entiers relatifs.
  • Fermeture intégrale d'un sous-anneau B : dans un anneau commutatif unitaire intègre A contenant un sous-anneau B, la fermeture intégrale de B dans A est l'ensemble des éléments de A entiers sur B. C'est un sous-anneau de A contenant B comme sous-anneau.

Un anneau intégralement clos est un anneau commutatif unitaire intègre égal à sa fermeture intégrale dans son corps des fractions.

L'anneau des entiers relatifs est intégralement clos.
Plus généralement : un anneau factoriel est intégralement clos.
  • Le centre Z(A) d'un anneau A est par définition Z(A)={x∈A / ∀y∈A, x.y=y.x}, c’est-à-dire l'ensemble des éléments qui commutent avec tous les autres pour la loi ".". C'est un sous-anneau.
  • L'intersection de deux sous-anneaux d'un même anneau, est un sous-anneau.
  • L'image d'un anneau par un homomorphisme d'anneau est un sous-anneau de l'anneau d'arrivée. (Si les anneaux sont unitaires, on impose aux morphismes de transformer unité en unité.)

Cependant, la structure de sous-anneau (excepté le cas d'un anneau dans son corps des fractions) est moins riche en résultats que celle d'idéal ou de module sur un anneau.

Page générée en 0.107 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise