Analyse factorielle des correspondances - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Extension

La technique de l'AFC peut être utilisée pour des tableaux d'un autre type que tableau de contingence. En revanche, son utilisation pour ces tableaux oblige toujours à des adaptations spécifiques au type de tableau. On peut utiliser l'AFC sur des tableaux :

  • logiques
  • logiques dédoublés
  • de notes d'intensité
  • de rang
  • de mesure
  • qualitatifs

Lorsque l'on utilise l'AFC sur des tableaux disjonctifs complet ou de Burt  Page d'aide sur l'homonymie , on utilise en réalité la méthode de l'analyse des correspondantes multiples (ACM).

La distance χ2

Etudier la liaison entre deux variables qualitatives revient à étudier l'écart entre les données observées et une situation théorique d'indépendance. Cette situation théorique correspond au tableau : \tilde{f}_{i,j}

\tilde{f}_{i,j}=f_{i,\cdot}f_{\cdot,j}

Si le tableau des données vérifie la relation d'indépendance \tilde{f}_{i,j}=f_{i,j} , alors tous les profils-lignes d'une part et tous les profils-colonnes d'autre part sont égaux au profil moyen correspondant.

L'écart à l'indépendance est pris en compte en considérant le tableau X de terme général:

x_{i,j}=\frac{f_{i,j}}{f_{i,\cdot}f_{\cdot,j}}-1 ,

On peut tester l'hypothèse d'indépendance par le test χ2 (prononcé "Ki-2")

\chi^2=n\sum_{i,j}\frac{(f_{i;j}-\tilde{f}_{i,j})^2}{\tilde{f}_{i,j}}=n\sum_{i,j} \,\tilde{f}_{i,j} \,x_{i,j}^2 ,

Cette statistique vaut 0 ou proche 0 si les données observées vérifient le modèle d'indépendance. Mais cette statisque ne répond pas aux questions suivantes:

  • Par case: quelles sont, entre une modalité ligne i et une modalité colonne j, les associations les plus remarquables?
  • Par ligne: quelles sont les départements qui ont un profil de vote particulier?
  • Par colonne: quels sont les candidats qui ont un électorat particulier?

Pour répondre à ces questions, on rappelle que l'analyse en composantes principales (ACP) peut réduire la dimension des problèmes et sélectionner les effets principaux. Mais une métrique spéciale est adaptée-la métrique du χ2. Dans ce sens, l'AFC peut être considérée comme une ACP particulière dotée de la métrique du χ2 qui ne dépend que du profil des colonnes du tableau.

Considérons le tableau X, chaque ligne peut être considéré comme un point dans l'espace de dimension J, noté  \Bbb{R}^J , dont chaque dimension est associée à une colonne du tableau X. On affecte à la ligne i un poids proportionnel à son effectif soit f_{i,\cdot} . Le centre de gravité est confondu avec l'origine des axes :

\sum_{i}f_{i,\cdot}x_{i,j}=0

La distance χ2 est définie comme (to be continued)

Bibliographie

  • Histoire et préhistoire de l'analyse des données, Dunod, 1982, ISBN 2-04-015467-1
  • L'analyse des données / lecons sur l'analyse factorielle et la reconnaissance des formes et travaux, Dunod 1982, ISBN 2-04-015515-5
  • Linguistique et lexicologie, Dunod, 2007 réédition, ISBN 2-04-010776-2
  • Pratique de l'analyse des données, Dunod, 1980, ISBN 2-04-015732-8
  • Le Roux B. et Rouanet H., Geometric Data Analysis, Kluwer Academic Publishers, Dordrecht (June 2004)
Page générée en 0.093 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise