Bien que le modèle parfait de l'AOP permette de calculer la fonction de transfert et de comprendre la plupart des montages à base d'AOP, les AOP réels possèdent un certain nombre de limitations par rapport à ce modèle.
L'AOP présente les défauts suivants : présence d'un offset en entrée, influence de la tension de mode commun (moyenne arithmétique des tensions des deux entrées) sur la tension de sortie, impédance non nulle en sortie, impédance non infinie en entrée et variation du gain en fonction de la fréquence. De plus, la tension de sortie peut être influencée par des variations de tension d'alimentation et possède une vitesse de balayage finie.
Le gain différentiel Gdiff d'un AOP réel est fini et varie en fonction de la fréquence. Pour un AOP compensé, la variation en fréquence du gain différentiel peut être assimilée à celle d'un système passe-bas du premier ordre dont le produit gain-bande passante est constant:
Avec G0 le gain continu et f1, la fréquence de coupure à 3 dB. Le gain G0 vaut généralement entre 100 et 130 dB pour un AO de précision et entre 60 et 70 dB pour un AO rapide. Pour les applications nécessitant une bande passante plus importante, il existe des AOP sous-compensés ou, plus rarement, non compensés. Pour ces amplificateurs, le constructeur précise le gain minimal pour lequel l'AOP reste inconditionnellement stable (pour plus d'informations, se référer au paragraphe compensation fréquentielle).
La tension de sortie d'un AOP ne dépend pas uniquement de la différence de tension entre ces deux entrées, elle dépend aussi de la moyenne de ces deux entrées (ou tension de mode commun). La relation entrée sortie d'un AOP s'établit ainsi :
Avec Gmc, le gain en mode commun. Afin de définir la capacité de l'amplificateur à rejeter le mode commun, on définit le taux de réjection du mode commun (TRMC) :
Le TRMC en continu varie entre 70 et 130 dB suivant l'amplificateur, mais il diminue fortement avec l'augmentation de la fréquence et est aussi dépendant des tensions d'alimentation.
L'impédance d'entrée d'un AO est due aux transistors d'entrées de celui-ci. L'entrée d'un AOP peut être modélisée par trois résistances : deux résistances de mode commun et une résistance différentielle. Les résistances de mode commun sont reliées entre une des deux entrées et le zéro tandis que la résistance différentielle est disposée entre les deux entrées différentielles. Ces résistances ont des valeurs comprises entre 105 et 1012 Ω suivant la technologie des transistors utilisés.
De plus, il existe en parallèle de chacune de ces résistances un condensateur dont la valeur peut varier de quelques pF à 25 pF. Ces condensateurs font chuter l'impédance d'entrée de l'amplificateur à haute fréquence. L'utilisation d'une boucle de contre-réaction multiplie l'impédance d'entrée par le gain, cette boucle permettant ainsi de diminuer l'effet de ces condensateurs sur le gain en haute fréquence. Les sources possédant aussi des capacités parasites faisant baisser leurs impédances en hautes fréquences, l'effet de l'impédance d'entrée d'un AOP, alimenté par une source de faible résistance, sur le système peut généralement être négligé.
Pour les AOP utilisant une contre-réaction en courant, l'impédance de l'entrée non-inverseuse peut elle aussi être modélisée par une résistance comprise entre 105 et 109 Ω en parallèle avec un condensateur. L'entrée inverseuse peut être modélisée, quant à elle, par une charge réactive (condensateur ou inductance suivant l'AOP) en série avec une résistance comprise entre 10 et 100 Ω.
L'impédance de sortie, notée RS, d'un AOP n'est pas nulle. Elle vaut entre 50 Ω et 200 Ω. Cette impédance de sortie se traduit pas une chute de la tension de sortie au fur et à mesure que le courant de charge augmente. Dans un montage utilisant une contre-réaction, l'impédance de sortie se trouve divisée par le gain de la boucle de contre-réaction ce qui permet de la ramener à une valeur proche du zéro idéal.
Lorsqu'un amplificateur opérationnel ne reçoit aucun signal sur ses entrées (lorsque ses entrées sont toutes les deux réunies à zéro), il subsiste généralement une tension continue de décalage de la tension de sortie vis-à-vis de zéro. Ce décalage (ou offset) provient de deux phénomènes : la tension de décalage propre aux circuits internes de l'AOP d'une part, et l'influence des courants de polarisation de la paire différentielle des transistors d'entrée sur le circuit extérieur d'autre part.
La tension de décalage représente la différence de tension qu'il faudrait appliquer entre les deux entrées d'un AOP en boucle ouverte, quand on a relié une des entrées au zéro, pour avoir une tension de sortie nulle. Cette tension d'offset peut être représentée en série avec l'entrée non-inverseuse ou inverseuse.
Ce défaut provient des imperfections technologiques de l'amplificateur opérationnel. Elles se traduisent par un déséquilibre en tension, lié par exemple aux dissymétries de V des transistors de l'étage différentiel d'entrée dans un AOP à transistors bipolaires. D'autres imperfections, comme les dissymétries de gain et de composants internes s'ajoutent aux causes de ce déséquilibre. En effet l'erreur en sortie peut s'écrire comme le produit du gain par la tension de décalage d'entrée, plus la tension de décalage de l'amplificateur de sortie. Suivant le montage de l'AOP et le gain désiré, l'erreur de l'étage d'entrée ou celle de l'étage de sortie sera prépondérante. Dans un amplificateur de mesure, le gain peut être important, rendant prépondérant l'erreur due à l'étage d'entrée. Dans le cas de montages à faible gain, la tension de décalage de l'étage de sortie devra être prise en compte. Les amplificateurs de précision sont ajustés par laser pour limiter ce décalage. Certains amplificateurs proposent également d'annuler la tension de décalage par utilisation d'un potentiomètre externe.
Pour les AOP standard, la tension de décalage vaut entre 50 et 500 µV, mais elle varie entre 1 µV pour les amplificateurs de type chopper à 50 mV pour les moins bons AO CMOS. Généralement, les AOP de type bipolaire sont ceux qui offrent les tensions de décalage les plus faibles, en particulier lorsque les transistors de l'étage différentiel d'entrée sont parfaitement appariés. La tension d'offset est dépendante de la température. Ceci est un critère important influant sur les performances des montages, en particulier intégrateurs. Selon les modèles d'AOP elle varie de quelques dizaines de µV/°C pour les AOP classiques à 0,1 µV/°C pour les AOP de précision. L'influence du vieillissement sur la tension de décalage est également à prendre en considération dans le cas de montages de précision.
Les courants traversant chacune des entrées de l'AOP lorsque aucun signal ne lui est appliqué proviennent des courants de polarisation des transistors d'entrée. On définit un courant de polarisation qui est la moyenne entre les courants de polarisation traversant les deux entrées et un courant de décalage dit « courant d'offset » qui est la différence entre les courants de polarisation traversant les deux entrées. Le courant de polarisation peut varier de 60 fA à plusieurs µA. Le courant d'offset est lui aussi dépendant de la température. Il peut varier de quelques dizaines de nA/°C à quelques pA/°C, voire des valeurs encore inférieures.
La vitesse de balayage (ou slew rate) représente la vitesse de variation maximale de tension que peut produire un amplificateur. Lorsque la vitesse de variation du signal de sortie d’un amplificateur est supérieure à sa vitesse de balayage, sa tension de sortie est une droite de pente SR.
La vitesse de balayage est exprimée en V/µs.
Dans un AOP, le slew-rate dépend généralement du courant maximum que peut fournir l'étage différentiel. L'étage différentiel fournit à l'étage d'amplification de tension un courant proportionnel à la différence de tension entre les deux entrées. Ce courant sert majoritairement à charger la capacité de compensation interne C présente dans l'étage d'amplification en tension. La relation courant / tension est alors celle d'un condensateur :
Le courant maximum que peut fournir l'étage d'entrée étant égal à deux fois le courant de polarisation IC0 traversant le collecteur d'un des transistors d'entrée, le slew-rate peut s'obtenir de la façon suivante :
Pour un µA741, le courant de polarisation IC0=10 µA et la capacité de compensation interne C=30 pF ce qui donne une vitesse de balayage de 0,67 V/µS et est en accord avec ce qui peut être mesuré. Si l'AOP ne possède pas de capacité de compensation, le slew-rate est déterminé par les capacités parasites internes à l'AOP. De tels AOP possèdent un slew-rate et une bande passante plus importante que les AOP compensés, mais ils ne sont pas stables lors d'une utilisation en suiveur.
Les AOP BiFET rapides compensés en fréquence, série TL071 - TL081 et dérivés, ont des slew-rate plus élevés, de l'ordre de 10 à 20 V/µs.
Voici un tableau donnant les caractéristiques de quelques AOP :
Propriété | Ordre de grandeur | Bipolaire (LM741) | BiFET (TL081) | Bimos (CA3140) | Cmos (LMC6035) |
---|---|---|---|---|---|
Amplification Adiff=Vs/(V+-V-) | > 105 | 2*105 | 2*105 | 105 | 106 |
Gain Gdiff=20.log(Adiff) | > 100 | 106 | 106 | 100 | 106 |
Impédance d'entrée Re (Ω) | > 105 | 2*106 | 1012 | 1,5*1012 | > 1013 |
Impédance de sortie Rs (Ω) | < 200 | 75 | 100 | 60 | |
Fréquence de coupure f1 | 10 Hz | ~20 Hz | |||
Courants de fuite I+, I- | < 500 nA | 80 nA | 30 pA | 10 pA | 0,02 pA |
Tension d'offset Voff (mV) | < 10 | 1 | 3 | 8 | 0,5 |
TRMC Gdiff/Gmc (dB) | > 70 | 90 | 86 | 90 | 96 |
Tension de bruit (nV/
![]() | 18 | 40 | 27 | ||