Alliage à mémoire de forme - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Les alliages à mémoire de forme (AMF) sont des alliages possédant plusieurs propriétés inédites parmi les matériaux métalliques : la capacité de "garder en mémoire" une forme initiale et d'y retourner même après une déformation, la possibilité d'alterner entre deux formes préalablement mémorisées lorsque sa température varie autour d'une température critique, et un comportement superélastique permettant des allongements sans déformation permanente supérieurs à ceux des autres métaux. Parmi les principaux alliages à mémoire de forme, on retrouve toute une variété d'alliages de nickel et de titane comme constituants principaux, en proportions presque égales. Bien que "nitinol" ne soit en fait que le nom de l'un de ces "alliages quasi-équiatomiques nickel-titane", cette appellation est devenue couramment utilisée dans la littérature pour désigner l'ensemble de ces alliages, qui ont des propriétés fort semblables. Afin d'alléger le texte, il en sera fait ici le même usage. Dans une moindre mesure, le laiton et certains alliages cuivre-aluminium possèdent également des propriétés de mémoire de forme. Ces alliages à base de cuivre ont été mis au point par M.Clément et M.Mutel au sein du centre de recherche métallurgique de Tréfimétaux.

Historique

Le phénomène qui donne son nom aux alliages à mémoire de forme n'a été observé pour la première fois que dans les années 1930 par le chercheur suédois Arne Ölander, qui avait noté la capacité de l'alliage or-cadmium (Au-Cd) de retrouver une forme connue après avoir été déformée, observation qui fut aussi faite par Chang et Read vers la même époque. Peu de temps après, en 1938, Greninger et Mooradian, et parallèlement Kurdyumov, constatèrent l'existence du même phénomène dans le laiton (alliage cuivre-zinc). L'effet mémoire de forme fut trouvé pendant les années qui suivirent dans plusieurs alliages: les systèmes fer-platine, indium-cadmium, fer-nickel, nickel-aluminium et dans l'acier inoxydable.

Ce n'est cependant qu'en 1962, à la découverte d'un effet mémoire de forme dans un intermétallique d'un alliage de nickel-titane par Buehler et Wiley du Naval Ordnance Laboratory (d'où le nom "nitinol" est tiré: nickel-titane Naval Ordnance Laboratory), que l'intérêt pour la recherche et le potentiel commercial des AMF prit réellement son envol. Depuis, en plus des alliages quasi-équiatomiques nickel-titane, certains autres alliages montrant des caractéristiques de mémoire de forme furent développés, les plus populaires commercialement étant certains alliages contenant du cuivre, Cu-Al-Ni et Cu-Al-Zn.

Le couplage des propriétés magnétiques et thermiques a été récemment démontré dans le Ni-Mn-Ga. La transformation martensitique est toujours sous contrôle thermo-élastique, mais les variantes de martensites obtenues peuvent être orientées par l'application d'un champ magnétique, ouvrant ainsi la voie à une contrôle magnétique des AMF.

Parmi les usages grands public des matériaux à mémoire de forme, citons certains pare-chocs de voiture.

Effets

Les Alliages à Mémoire de Forme (AMF) regroupent un ensemble d'alliages métalliques présentant diverses propriétés :

  • La superélasticité : l'alliage est capable de se déformer énormément (jusqu'à 10%) de manière réversible sous l'effet d'une contrainte ;
  • L'effet mémoire simple sens : l'alliage est capable de retrouver par chauffage sa forme initiale après une déformation mécanique ;
  • L'effet mémoire double sens : l'alliage est capable après " éducation " d'avoir deux positions stables, l'une au-dessus d'une température dite critique et l'autre en dessous ;
  • L'effet caoutchoutique : l'alliage (sous forme matensitique auto-accommodée) subissant une déformation conserve au relâchement une déformation résiduelle ; si le matériau est à nouveau contraint puis déchargé, cette déformation résiduelle augmente ;
  • L'effet amortissant : l'alliage est capable d'amortir des chocs ou d'atténuer des vibrations mécaniques. En effet la super-élasticité ou même simplement l'élasticité de la phase martensitique présentent un phénomène d'Hystérésis qui entraîne une dissipation de l'énergie.
Page générée en 0.108 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise