Algèbre de Clifford - Définition et Explications

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

En mathématiques, les algèbres de Clifford sont des algèbres associatives importantes au sein des théories des formes quadratiques, des groupes orthogonaux et en physique. Elles peuvent être vues comme l'une des généralisations possibles des nombres complexes et des quaternions. Elles ont été nommées en l'honneur du mathématicien (Un mathématicien est au sens restreint un chercheur en mathématiques, par extension toute personne faisant des mathématiques la base de son activité principale. Ce terme...) anglais William Kingdon Clifford.

Une certaine familiarité avec les bases de l'algèbre multilinéaire sera très utile à la lecture de cet article.

Introduction et propriétés de base

Précisément, une algèbre de Clifford (En mathématiques, les algèbres de Clifford sont des algèbres associatives importantes au sein des théories des formes quadratiques, des...) est une algèbre associative (En mathématiques, une algèbre associative est un espace vectoriel dans lequel est aussi définie une multiplication des vecteurs, qui possède les propriétés de distributivité et...) unitaire qui est engendrée par un espace vectoriel (En algèbre linéaire, un espace vectoriel est un ensemble muni d'une structure permettant d'effectuer des combinaisons linéaires.) V muni d'une forme quadratique (En mathématiques, une forme quadratique est un polynôme homogène de degré deux avec un nombre quelconque de variables. Par exemple, la distance comprise entre deux points dans un espace euclidien à trois...) Q.

L'algèbre (L'algèbre, mot d'origine arabe al-jabr (الجبر), est la branche des mathématiques qui étudie, d'une façon générale, les structures...) de Clifford \mathcal{C}\ell(V,Q)\, est l'algèbre « la plus générale » engendrée par V soumise à la condition

v^2 = Q(v)\ \rm{pour~tout}\ v\in V,\,

où le produit v2 est pris à l'intérieur de l'algèbre et le réel Q(v) est identifié à Q(v)·1, 1 désignant l'unité de l'algèbre. Si la caractéristique du corps de base K n'est pas 2, alors on peut ré-écrire cette identité fondamentale (En musique, le mot fondamentale peut renvoyer à plusieurs sens.) sous la forme

uv + vu = 2 \lang u, v\rang pour tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) u,v \in V

\lang u, v\rang = (Q(u+v) - Q(u) - Q(v))/2\, est la forme bilinéaire (En mathématiques, plus précisément en algèbre linéaire, une forme bilinéaire est un type particulier d'application qui,...) symétrique associée à Q.

Cette idée d'algèbre « la plus générale » soumise à cette identité peut être formellement exprimée à travers la notion de propriété universelle (voir ci-dessous).

Les algèbres de Clifford sont directement reliées aux algèbres extérieures. En fait, si Q = 0 alors l'algèbre de Clifford \mathcal{C}\ell(V,Q)\, est simplement l'algèbre extérieure \Lambda(V)\,. Pour Q différent de zéro (Le chiffre zéro (de l’italien zero, dérivé de l’arabe sifr, d’abord transcrit zefiro en italien) est un symbole marquant une position vide dans...), il existe un isomorphisme canonique linéaire entre \Lambda(V)\, et \mathcal{C}\ell(V,Q)\, toutes les fois que le corps de base K n'est pas de caractéristique 2. C’est-à-dire qu'ils sont naturellement isomorphes comme espaces vectoriels mais avec des multiplications différentes. La multiplication (La multiplication est l'une des quatre opérations de l'arithmétique élémentaire avec l'addition, la soustraction et la division .) de Clifford est plus riche que le produit extérieur puisqu'il fait usage (L’usage est l'action de se servir de quelque chose.) d'une information supplémentaire fournie par Q.

Les formes quadratiques et les algèbres de Clifford de caractéristique 2 forment un cas exceptionnel. En particulier, si la caractéristique de K = 2, il n'est pas vrai qu'une forme quadratique est déterminée par sa forme bilinéaire (Soit E, F et G trois espaces vectoriels sur un corps . Soit une application, on dit que est bilinéaire si et seulement si elle est linéaire en chacune de ses variables, c'est-à-dire: : ) symétrique, ou que chaque forme quadratique admet une base orthogonale. Beaucoup de résultats dans cet article incluent la condition que la caractéristique n'est pas 2, et sont faux si cette condition est enlevée.

Base et dimension

Si la dimension de V est n et \{e_1,\ldots,e_n\} est une base de V, alors l'ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut...)

\{e_{i_1}e_{i_2}\cdots e_{i_k} \mid 1\le i_1 < i_2 < \cdots < i_k \le n\mbox{ et } 0\le k\le n\}

est une base de \mathcal{C}\ell(V,Q)\,. Le produit vide (Le vide est ordinairement défini comme l'absence de matière dans une zone spatiale.) (k = 0) est défini comme l'élément neutre multiplicatif. Pour chaque valeur de k, il existe \binom{n}{k} éléments de la base, donc, la dimension totale de l'algèbre de Clifford est

\dim \mathcal{C}\ell(V,Q) = \sum_{k=0}^n\begin{pmatrix}n\\ k\end{pmatrix} = 2^n.

Si la caractéristique n'est pas 2, il existe un ensemble de bases privilégiées pour V : les bases orthogonales. Une base orthogonale est telle que

\langle e_i, e_j \rangle = 0 \qquad i\neq j. \,

où <·,·> est la forme bilinéaire symétrique associée à Q. L'identité de Clifford fondamentale implique que pour une base orthogonale

e_ie_j = -e_je_i \qquad i\neq j. \,

Ceci rend la manipulation des vecteurs de la base orthogonale tout à fait simple. Etant donné un produit e_{i_1}e_{i_2}\cdots e_{i_k} de vecteurs distincts de la base orthogonale, on peut les placer dans un ordre standard en incluant un signe correspondant au nombre (La notion de nombre en linguistique est traitée à l’article « Nombre grammatical ».) de permutations nécessaires pour les ordonner correctement (i.e. la signature de la permutation (En mathématiques, la notion de permutation exprime l'idée de réarrangement d'objets discernables. Une permutation de n objets distincts rangés dans un certain ordre, correspond à un...) ordonnée).

On peut aisément étendre la forme quadratique sur V vers une forme quadratique sur \mathcal{C}\ell(V,Q)\, en demandant que les éléments distincts e_{i_1}e_{i_2}\cdots e_{i_k} soient orthogonaux entre eux, et en posant :

Q(e_{i_1}e_{i_2}\cdots e_{i_k}) = Q(e_{i_1})Q(e_{i_2})\cdots Q(e_{i_k})

En particulier Q(1) = 1 et la forme quadratique sur un scalaire (Un vrai scalaire est un nombre qui est indépendant du choix de la base choisie pour exprimer les vecteurs, par opposition à un pseudoscalaire, qui est un nombre qui peut dépendre de la base.) est simplement Q(\lambda) = \lambda^2\,. Ainsi, les bases orthogonales de V peuvent être étendues en une base orthogonale de \mathcal{C}\ell(V,Q)\,. La forme quadratique définie de cette manière est en fait indépendante de la base orthogonale choisie (une formulation (La formulation est une activité industrielle consistant à fabriquer des produits homogènes, stables et possédant des propriétés spécifiques, en mélangeant différentes...) indépendante de la base sera donnée (Dans les technologies de l'information, une donnée est une description élémentaire, souvent codée, d'une chose, d'une transaction, d'un événement, etc.) plus bas).

Page générée en 0.375 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique