Algèbre de Clifford - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Exemples : les algèbres de Clifford réelles et complexes

Les algèbres de Clifford les plus importantes sont celles sur les espaces vectoriels réels et complexes muni de formes quadratiques non dégénérées.

Chaque forme quadratique non dégénérée sur un espace vectoriel réel de dimension finie est équivalente à la forme diagonale standard :

Q(v) = v_1^2 + \cdots + v_p^2 - v_{p+1}^2 - \cdots - v_{p+q}^2

n = p + q est la dimension de l'espace vectoriel. La paire d'entiers (p, q) est appelée la signature de la forme quadratique. L'espace vectoriel avec cette forme quadratique est souvent noté \mathbb{R}^{p,q}\,. L'algèbre de Clifford sur \mathbb{R}^{p,q}\, est notée \mathcal{C}\ell_{p,q}(\mathbb{R})\,. Le symbole \mathcal{C}\ell_{n}(\mathbb{R})\, signifie soit \mathcal{C}\ell_{n,0}(\mathbb{R})\, ou \mathcal{C}\ell_{0,n}(\mathbb{R})\, selon que les auteurs préfèrent des espaces définis positifs ou négatifs.

Une base orthonormale standard {ei} pour \mathbb{R}^{p,q}\, consiste en n = p + q vecteur mutuellement orthogonaux, p ont une norme +1 et q ont une norme -1. L'algèbre \mathcal{C}\ell_{p,q}(\mathbb{R})\, aura par conséquent p vecteurs dont le carré sera égal à +1 et q vecteurs dont le carré sera égal à -1.

  • \mathcal{C}\ell_{0,0}(\mathbb{R})\, est naturellement isomorphe à \mathbb{R}\, puisqu'il n'y a pas de vecteurs différents de zéro.
  • \mathcal{C}\ell_{0,1}(\mathbb{R})\, est une algèbre à deux dimensions engendrée par un vecteur unique e1 dont le carré est égal à -1, et par conséquent est isomorphe à \mathbb{C}\,, le corps des nombres complexes.
  • L'algèbre \mathcal{C}\ell_{0,2}(\mathbb{R})\, est une algèbre à quatre dimensions engendrée par {1, e1, e2, e1e2}. Les trois derniers éléments ont le carré égal à -1 et anticommutent tous, et donc, l'algèbre est isomorphe aux quaternions \mathbb{H}\,.
  • L'algèbre suivante dans la suite, \mathcal{C}\ell_{0,3}(\mathbb{R})\,, est une algèbre à huit dimensions isomorphe à la somme directe \mathbb{H} \oplus \mathbb{H}\, appelée les biquaternions de Clifford.

On peut aussi étudier les algèbres de Clifford sur les espaces vectoriels complexes. Chaque forme quadratique non dégénérée sur un espace vectoriel complexe est équivalent à la forme diagonale standard

Q(z) = z_1^2 + z_2^2 + \cdots + z_n^2

n = dim V, donc il existe essentiellement une seule algèbre de Clifford dans chaque dimension. Nous noterons l'algèbre de Clifford sur \mathbb{C}^n\, avec la forme quadratique standard par \mathcal{C}\ell_n(\mathbb{C})\,. On peut montrer que l'algèbre \mathcal{C}\ell_n(\mathbb{C})\, peut être obtenue par la complexification de l'algèbre \mathcal{C}\ell_{p,q}(\mathbb{R})\,n = p + q:

\mathcal{C}\ell_n(\mathbb{C}) \cong \mathcal{C}\ell_{p,q}(\mathbb{R})\otimes\mathbb{C} \cong \mathcal{C}\ell(\mathbb{C}^{p+q},Q\otimes\mathbb{C}).

Ici Q est la forme quadratique réelle de signature (p,q).

Note : la complexification ne dépend de la signature. Les premiers cas ne sont pas difficiles à calculer. On trouve que

\mathcal{C}\ell_{0}(\mathbb{C})=\mathbb{C}\,
\mathcal{C}\ell_{1}(\mathbb{C})=\mathbb{C} \oplus \mathbb{C}\,
\mathcal{C}\ell_{2}(\mathbb{C})=\mathbb{M}_2(\mathbb{C})\,

\mathbb{M}_2(\mathbb{C})\, représente l'algèbre de matrices 2 x 2 sur \mathbb{C}\,.

Il s'avère que chacune des algèbres \mathcal{C}\ell_{p,q}(\mathbb{R})\, et \mathcal{C}\ell_n(\mathbb{C})\, est isomorphe à l'algèbre de matrices sur \mathbb{R}\,, \mathbb{C}\, ou \mathbb{H}\, ou à la somme directe de deux algèbres de cette sorte. Pour une classification complète de ces algèbres :

Le groupe Γ de Clifford

Dans cette partie, nous supposons que V est de dimension finie et que la forme bilinéaire de Q est non-singulière.

Le groupe de Clifford \Gamma\, est défini comme étant l'ensemble des éléments inversibles x de l'algèbre de Clifford tels que

x v \alpha(x)^{-1}\in V\,

pour tout v dans V. Cette formule définit aussi une action du groupe de Clifford sur l'espace vectoriel V qui conserve la norme Q et donc, donne un homomorphisme du groupe de Clifford vers le groupe orthogonal. Le groupe de Clifford contient tout les éléments r de V de norme différente de zéro, et ceux-ci agissent sur V par les réflexions correspondantes que prennent v vers v − <v,r>r/Q(r) (En caractéristique 2, ceux-ci sont appelée des transvections orthogonales plutôt que réflexions).

Beaucoup d'auteurs définissent le groupe de Clifford légèrement différemment, en remplaçant l'action xv~\alpha(x)^{-1}\, par xvx^{-1}\,. Ceci produit le même groupe de Clifford, mais l'action du groupe de Clifford sur V est changée légèrement : l'action des éléments impairs \Gamma^1\, du groupe de Clifford est multiplié par un facteur extérieur à -1.

L'action utilisée ici possède plusieurs petits avantages : elle est conforme avec les conventions usuelles de signes de superalgèbre, les éléments de V correspondent aux reflexions et dans les dimensions impaires, l'application du groupe de Clifford vers le groupe orthogonal est sur, et le noyau n'est pas plus grand que K*. En utilisant l'action \alpha(x)vx^{-1}\, à la place de xv\alpha(x)^{-1}\, ne fait pas de différence : elle produit le même groupe de Clifford avec la même action sur V.

Le groupe de Clifford \Gamma\, est l'union disjointe de deux sous-ensemble \Gamma^0\, et \Gamma^1\,, où \Gamma^i\, est le sous-ensemble des éléments de degré i. Le sous-ensemble \Gamma^0\, est un sous-groupe d'index 2 dans \Gamma\,.

Si V est de dimension finie avec une forme bilinéaire non dégénérée alors les applications du groupe de Clifford sur le groupe orthogonal de V et le noyau consiste en éléments différents de zéro du corps K. Ceci conduit aux suites exactes

 1 \rightarrow K^* \rightarrow \Gamma \rightarrow O_V(K) \rightarrow 1,\,
 1 \rightarrow K^* \rightarrow \Gamma^0 \rightarrow SO_V(K) \rightarrow 1.\,

En caractéristique arbitraire, la norme de spin Q est définie sur le groupe de Clifford par

Q(x) = x^tx\,

C'est un homomorphisme du groupe de Clifford vers le groupe K* des éléments différents de zéro de K. Il coïncide avec la forme quadratique Q de V lorsque V est identifié avec un sous-espace d'algèbre de Clifford. Plusieurs auteurs définissent la norme de spin légèrement différemment, c’est-à-dire qu'elle diffère de celle utilisée ici par un facteur de - 1, 2, ou - 2 sur \Gamma^1\,. La différence n'est pas très importante.

Les éléments différents de zéro de K ont une norme de spin dans le groupe K*2 de carrés des éléments différents de zéro du corps K. Donc, lorsque V est de dimension finie et non-singulière, nous obtenons une application induite à partir du groupe orthogonal de V vers le groupe K*/K*2, aussi appelé la norme de spin. La norme de spin d'une réflexion d'un vecteur r possède comme imge Q(r) dans K*/K*2, et cette propriété le définit uniquement dans le groupe orthogonal. Ceci donne les suites exactes :

 1 \rightarrow \{\pm 1\} \rightarrow Pin_V(K) \rightarrow O_V(K) \rightarrow K^*/K^{*2},\,
 1 \rightarrow \{\pm 1\} \rightarrow Spin_V(K) \rightarrow SO_V(K) \rightarrow K^*/K^{*2}.\,

Note : En caractéristique 2, le groupe {±1} possède simplement un élément.

Page générée en 0.056 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise