les structures d'ADN vus in vivo par ailleurs possèdent un role fonctionnel: la recombinaison génétique et la mutation.
il y a un seul sillon qui ressemble au grand sillon de l'ADN B. les paires de bases qui forment dans l'ADN B le grand sillon proche de l'axe sont rejetés à l'exterieur au niveau de l'ADN Z. les phosphores sont plus proches les uns des autres. l'ADN Z ne peut pas former le nucléosome.une proportion est formée de bases G-C favorise la conformation Z et la méthylation de la cytosine.
les jonctions de Holiday formées lors de la recombinaison sont des structures cruciformes de répétitions inversées en miroir de segment ADN polypurines, polypyrimidiques est également produit des structures cruciformes ou épingle à cheveux par appariment intrabrin.
l'ADN H pourrait avoir un role dans la réguation fonctionnelle de l'expression des gènes, ainsi que sur les ARN. par exemple: repression de la transcription.
Les propriétés mécaniques de l'ADN peuvent être étudiées par des simulations numériques de dynamique moléculaire ainsi que par des expériences de manipulation de molécules uniques (par exemple, à l'aide de pinces optiques ou magnétiques). Comme tous les polymères, l'ADN est une molécule élastique. Sous des contraintes faibles, un double brin peut être décrit par des modèles standards de la physique des polymères (modèle du ver, etc.). Cependant, en appliquant une force de 65pN aux extrémités d'un double brin, l'on fait transiter celui-ci vers une nouvelle forme, environ 1.7 fois plus longue, dite ADN-S (stretched). Ceci peut s'interpréter par une rotation des paires de base : la double hélice se transforme en "échelle", ou en "fibre". Il semblerait que cette transition joue un rôle dans certains processus biologiques, telles que la réparation de l'ADN par certaines protéines