Acide aminé - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Métabolisme

Du point de vue métabolique, on distingue les acides aminés indispensables pour l’homme des autres : ce sont des acides aminés qui ne peuvent être synthétisés dans les cellules humaines et qui doivent donc être apportées par l’alimentation.

Lorsque les protéines se décomposent dans l'intestin, les acides aminés sont "libérés" du "collier". Ainsi, ils peuvent pénétrer la paroi intestinale. Ils se mélangent par la suite à d'autres acides aminés (notamment ceux provenant des protéines corporelles dégradées) pour former le "pool des acides aminés". De ce "pool" sont choisis les acides aminés dont l'organisme a besoin pour synthétiser les protéines qui lui manquent. Une fois choisis, ils sont liés dans le ribosome des cellules qui, eux, déterminent l'ordre des différentes "perles" à partir de l'information détenue dans l'ADN. D'autres acides aminés du "pool" sont aussi utilisés pour produire du glucose et des acides gras. Le processus par lequel l'organisme synthétise du glucose à partir des acides aminés s'appelle la "néoglucogénèse". Il consiste tout d'abord en la suppression du groupe amino (la partie NH2) grâce à une réaction impliquant de la pyridoxine (vitamine B6). Le groupe amino, qui est maintenant sous forme d'ammoniac (NH3) est tout de suite transformé en urée par le foie car cette substance est toxique. Le foie transforme ensuite le restant du groupe (appelé chaîne carbonée) en glucose ou en acides gras (qui sont les éléments de bases des lipides), ou aucun. Cela dépend si la chaîne carbonée est glucogénique (transformable en glucose) ou cétogénique (transformable en acides gras). Cette capacité est importante dans les cas d'une glycémie trop faible.

Propriétés générales

Solubilité

Diagramme de Venn des propriétés des acides aminés

La plupart des acides aminés subissent facilement la solvatation par les solvants polaires tels que l'eau, ou l'alcool (particulièrement proline et hydroxyproline) dans lesquels ils sont solubles. D'autre part, les acides α-aminés sont solubles, mais à moindre degré dans les solvants non polaires. Il est important de retenir que cette solubilité est largement dépendante des propriétés de la chaîne latérale: la solubilité diminue avec le nombre d'atomes de carbone du radical, mais inversement augmente si ce radical R est porteur de fonctions polaires (NH2, COOH) ou hydrophiles (OH). Ex de solubilité : La tyrosine, par son noyau aromatique, est peu soluble dans l'eau : 0,04 %. De même, la cystéine, la leucine.

Propriétés ioniques

Les acides aminés contiennent un groupement carboxyle -COOH acide et un groupement amino -NH2 basique. En solution, ces groupements existent sous deux formes, l'une chargée, l'autre neutre :

R-COOH ; R-COO- + H+

R-NH3+ ; R-NH2 + H+

Les acides aminés sont appelés pour cette structure diionique amphotères. L'ionisation varie avec le pH : les acides aminés existent, en solution aqueuse, sous 3 formes possibles :

a) En milieu acide (pH

b) En milieu basique (pH>pHi): La fonction acide s'ionise en libérant un proton, la base du milieu bloque l'ionisation du groupement amino. L'acide carboxylique se trouve sous forme d'anion.

c) Le pH pour lequel les 2 dissociations s'effectuent est appelé point isoélectrique : ou pHi. À ce pH, on a un ion dipolaire ou zwitterion de charge nette nulle, donc ne migrant pas dans un champ électrique.

De part et d'autre du pHi, on définit des pH qui correspondent à une demi dissociation de COOH et de NH3+, ce sont les pKs. Il existe donc 2 pK :

  • le pK de COOH : environ 2 - 3
  • le pK de NH3+ : environ 10

Le point (ou pH) isoélectrique ou isoionique est égal à la demi somme des pKs. Le radical R, lorsqu'il renferme un groupe ionisable, participe à la valeur du point isoélectrique. Un pK supplémentaire apparaît alors. Par exemple pour l'histidine :

  1. pK1 acide
  2. pK2 demi dissociation du groupe imidazole
  3. pK3 amine

Absorption de la lumière

Les solutions d'acides aminés sont incolores. Les acides aminés aromatiques absorbent dans l’UV entre 260 et 280 nm. Au-dessus de 260 nm, la plus grande partie de l'absorption ultraviolette des protéines provient de leur teneur en tryptophane et parfois en tyrosine et en phénylalanine. Ces acides aminés ont une telle absorption à cause de leur groupe aromatique.

Propriétés du groupe carboxyle

Amidation

Le carboxyle peut former des amides avec les amines.

R - COOH + R'NH_2 \Leftrightarrow R - CO - NHR' + H_2O

Asparagine et glutamine sont deux exemples de dérivés physiologiques formés suivant cette réaction. L'amidation peut être obtenue in vitro en utilisant des carbodiimides (R1-N=C=N-R2). Le groupe carboxyle est dans une première étape activé par la carbodiimide, puis le dérivé activé ainsi formé réagit avec l'amine.

Décarboxylation

Chimique ou enzymatique par une décarboxylase. Décarboxylation sous forme de CO. Les décarboxylases sont spécifiques de chaque acide aminé. La décarboxylation est importante en biochimie car elle aboutit aux « amines biologiques » correspondantes très actives :

Exemples :

Propriétés du groupement amino

Ce sont des propriétés générales d'amines primaires. Deux types de groupes aminos peuvent être distingués: les amines en alpha et l'amine en epsilon de la chaîne latérale de la lysine dont le pK est légèrement plus basique (>8). La différence des valeurs de pK peut être utilisée pour des modifications sélectives, en contrôlant le pH du milieu réactionnel.

Acétylation

L'acétylation des groupements aminos des acides aminés par l'anhydride acétique réduit leurs charges positives et change leurs interactions avec les composants de l'environnement.

Réaction avec les aldéhydes

Avec les aldéhydes aliphatiques : il se forme le dérivé diméthylol de l'acide aminé. Avec les aldéhydes aromatiques, on obtient des bases de Schiff.

Réaction d'un acide aminé avec un aldéhyde aromatique.

Une réaction du même type peut se produire in vivo entre acides aminés et oligosaccharides (réaction de glycation des protéines avec les résidus d'acides aminés ayant une fonction amine libre). Dans les enchainements saccharidiques, le sucre réducteur terminal existe de façon prédominante sous forme cyclique, avec seulement des traces sous forme ouverte. Une base de Schiff peut se former avec cette forme minoritaire, déplaçant ainsi l'équilibre entre les deux formes vers la forme ouverte.

In vitro, cette réaction avec les saccharides est généralement réalisée en présence de cyanoborohydrure de sodium (NaCNBH). La base de Schiff formée est ainsi rapidement réduite par les anions cyanoborohydrides en amine secondaire plus stable.

Arylation

La substitution d'un H de la fonction NH par un groupement aryle (aromatique) conduit à une fonction amine secondaire. Par exemple avec le dinitro-fluoro-benzène (réactif de Sanger) il se forme un dinitrophényl-acide aminé coloré, donc dosable. Cette réaction peut se produire lorsque l'acide aminé est incorporé dans une protéine. Si l'on hydrolyse une protéine on libère des acides aminés et des DNP acides aminés correspondant aux acides aminés dont les groupes NH sont libres dans la protéine (terminaux).
Cette réaction a permis à Frederick Sanger (en 1953) d'établir la première structure primaire d'une protéine (l'insuline).

Carbamylation

Elle a lieu avec les isocyanates, en particulier le phénylisothiocyanate (PITC).

Le PITC est particulièrement utilisé pour déterminer l'enchaînement des acides aminés dans les chaînes peptidiques. Le phénylthiocarbamyl-aminoacide (PTC-AA) résultant est un composé caractéristique de chaque acide aminé (nature du groupement R). Il est très stable et détectable dans l'ultraviolet (245 nm).

Réactions avec des esters de N-hydroxysuccinimide et de para-nitrophényl

Ces réactions permettent le greffage d'un groupement R sur le -NH d'un acide aminé, avec élimination du groupement réactif: c'est l'hydroxysubstitution

Hydroxysubstitutions d'un ester de N-hydroxysuccinimide et d'un ester de para-nitrophényl avec une acide aminé

Ces réactions sont utilisées pour la synthèse de dérivés d'acides aminés ou de protéines "marquées" sur leurs fonctions amines libres (dérivés fluorescents, biotinylation par la biotine-N-hydroxysuccinimide, ...); pour la synthèse de supports chromatographiques par greffage d'acides aminés ou de protéines, ...

Propriétés dues à la présence simultanée du -COOH et du -NH

Formation de complexes métalliques (chélation)

Ces chélates stables sont utilisés pour effectuer des réactions chimiques au niveau de R, en synthèse.

Décarboxylation et désamination oxydatives. Réaction avec la ninhydrine

Certains oxydants attaquent l'acide aminé et réalisent une désamination associée à une décarboxylation. Au cours de la réaction il y a production de CO, de NH et d'un aldéhyde ayant un atome de carbone de moins que l'acide aminé dont il provient.

 \rm{   \begin{array}{rl} R-&CH-\color{Red}COOH\\ &|\\ &\color{Red}NH_2   \end{array} \xrightarrow{oxydant} R-CHO + NH_3 + CO_2 }

Les oxydants sont variés : eau oxygénée, hypochlorite etc. Pour rendre cette réaction quantitative, on peut doser CO par alcalimétrie ou NH par colorimétrie. L'oxydant le plus utilisé est la ninhydrine (voir la page correspondante).

Lorsqu'un acide aminé en solution est chauffé en présence de ninhydrine en excès, il conduit à un chromophore avec un maximum d'absorption à 570 nm (bleu-violet). L'intensité de la coloration est à la base d'une méthode quantitative pour doser les acides aminés.La réaction s'effectue en 3 étapes. La 1re correspond à l'action d'une première molécule de ninhydrine sur l'acide aminé conduisant à un iminoacide et à une molécule de ninhydrine réduite. La 2e correspond à l'action d'une 2e molécule de ninhydrine sur l'iminoacide pour donner un aldéhyde. Cette 2e molécule se condense finalement avec la molécule de ninhydrine réduite pour former le chromophore.

La coloration n'est pas spécifique des acides aminés. Elle se produit avec d'autres composés ayant des groupements aminos libres : glucosamine, peptides et protéines. Cette méthode colorimétrique est une bonne technique pour le dosage d'un acide aminé pur, mais elle est moins valable pour un dosage global car les acides aminés réagissent en donnant des colorations d'intensité variable. Les iminoacides donnent avec la ninhydrine, une coloration jaune.

Un escalator sous l'océan
Il y a 21 minutes
Page générée en 0.521 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise