Acide acétique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Production et synthèse

L’acide acétique est produit de façon synthétique ou par fermentation bactérienne. Aujourd’hui, la méthode biologique ne concerne plus que 10% de la production, mais elle demeure importante pour la fabrication de vinaigre car, dans la plupart des pays, la loi dispose que le vinaigre à usage alimentaire doit être d’origine biologique. Environ 75% de l’acide acétique destiné à l’industrie chimique est produit par carbonylation du méthanol, voir détails ci-dessous. Le reste est constitué de diverses méthodes alternatives.

La production totale d’acide acétique est estimée à 5 Mt/a (millions de tonnes par an), dont environ la moitié vient des États-Unis. La production européenne arrive aux alentours de 1Mt/a et est en diminution, enfin 0,7Mt/a sont fabriquées au Japon. 1,5 Mt/a sont recyclées ce qui amène le marché mondial à 6,5 Mt/a. Les deux plus grands producteurs sont Celanese et BP Chimie. On trouve aussi parmi les principaux producteurs Millenium Chimie, Sterling Chimie, Samsung, Eastman, et Svens Etanolkemi.

Carbonylation du méthanol

La grande partie de l’acide acétique non recyclé est produit par carbonylation du méthanol. Dans ce procédé, le méthanol et le monoxyde de carbone réagissent pour produire l’acide acétique selon l’équation :

CH3OH + CO → CH3COOH

Ce procédé utilise de l’iodométhane comme intermédiaire et se produit en trois étapes. Un catalyseur, généralement un complexe métallique, est nécessaire pour la carbonylation (étape 2).

(1) CH3OH + HI → CH3I + H2O
(2) CH3I + CO → CH3COI
(3) CH3COI + H2O → CH3COOH + HI

En modifiant le processus, l’anhydride acétique peut être produit par la même usine. Le méthanol et le monoxyde de carbone étant des matières premières courantes, la carbonylation du méthanol est longtemps apparue comme une méthode intéressante pour la production de l’acide acétique. Henry Dreyfus de la British Celanese a développée une usine pilote de carbonylation du méthanol dès 1925. Cependant, le manque de matériel adéquat pour contenir le mélange réactionnel corrosif aux pressions nécessaires (200 atm ou plus) a freiné la commercialisation de cette méthode pendant un certain temps. Le premier processus commercialisé de carbonylation du méthanol, qui utilise du cobalt comme catalyseur, a été développé par l’entreprise chimique allemande BASF en 1963. En 1968, on a découvert un nouveau catalyseur à base de rhodium (cis−[Rh(CO)2I2]) capable d’agir efficacement à basse pression et avec très peu de sous-produits. La première usine utilisant ce catalyseur a été bâtie par l’entreprise américaine Monsanto en 1970, et la carbonylation du méthanol catalysée au rhodium est alors devenue la méthode dominante de production d’acide acétique (connue sous le nom de procédé Monsanto). Vers la fin des années 1990, BP a commercialisé le catalyseur Cativa ([Ir(CO)2I2]), favorisé par le ruthénium. Ce processus est plus écologique et efficace que le précédent, et a largement supplanté le processus Monsanto, souvent dans les mêmes usines.

Oxydation de l’acétaldéhyde

Avant la commercialisation du processus Monsanto, la majeure partie de l’acide acétique était produit par oxydation de l’acétaldéhyde. Cette méthode demeure la seconde plus importante voie de synthèse de l’acide acétique, bien qu’elle ne soit pas compétitive avec la carbonylation du méthanol. L’acétaldéhyde peut être produit par oxydation de butane ou de naphta léger, oxydation de l’éthylène ou encore par hydratation de l’acétylène.

Quand le butane ou le naphta léger est chauffé dans l’air en présence de différents ions métalliques, en particulier de manganèse, de cobalt et de chrome, un peroxyde se forme puis se décompose pour former de l’acide acétique.

2 C4H10 + 5 O2 → 4 CH3COOH + 2 H2O

On travaille avec une combinaison de température et de pression permettant d’avoir un mélange réactionnel aussi chaud que possible tout en gardant le butane à l’état liquide. 150 °C et 55 atm sont des conditions habituelles. Plusieurs sous-produits peuvent également être formés, parmi lesquels la butanone, l’acétate d'éthyle, l’acide formique et l’acide propanoïque. Ces sous-produits ont également une valeur marchande, et les conditions de réaction peuvent être altérées pour en produire davantage si cela a un avantage économique. Cependant, la séparation de l’acide acétique de ses sous-produits ajoute au coût du processus. Avec des conditions et des catalyseurs similaires à ceux utilisés pour l’oxydation du butane, l’acétaldéhyde peut être oxydé par le dioxygène de l’air pour produire de l’acide acétique.

2 CH3CHO + O2 → 2 CH3COOH

Grâce aux catalyseurs modernes, cette réaction peut atteindre un rendement de plus de 95 %. Les principaux sous-produits sont l’acétate d'éthyle, l’acide formique et le formaldéhyde. Tous ces composés ont une température d’ébullition inférieure à celle de l’acide acétique et peuvent être facilement séparés par distillation.

Oxydation de l’éthylène

L’acétaldéhyde peut être préparé à partir de l’éthylène via le procédé Wacker, puis oxydé comme détaillé ci-dessus. Plus récemment, une transformation de l’éthylène en acide acétique en une seule étape a été commercialisée par l’entreprise Showa Denko, qui a ouvert une usine d'oxydation d'éthylène à Oita, Japon, en 1997. Le processus est catalysé par un catalyseur métallique à base de palladium avec l’assistance d’un hétéropolyacide tel que l’acide tungstosilicique. Ce processus pourrait être un concurrent de la carbonylation du méthanol pour les petites usines (100–250 kt/a) en fonction du prix de l’éthylène.

Synthèse malonique

  • Synthèse malonique, en utilisant un halogénométhane comme substituant (R-X).
Page générée en 0.113 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise