Accélérateur de particules - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Les anneaux de stockage

Ils servent à mettre en attente et à renforcer les faisceaux de particules qui seront injectées dans l'accélérateur collisionneur. Les anneaux de stockage peuvent faire office de collisionneurs lorsque les faisceaux stockés sur des orbites séparées sont mis en interaction ( par court-circuit de la haute tension électrostatique de séparation ).

Anneau de stockage de particules ACO d'Orsay
  • Le choc de front (dans le centre de masse) de deux faisceaux de particules libère toute l'énergie cinétique acquise lors de l'accélération. Le gain d'énergie utile est considérable. Cela ne va pas sans difficultés, car la densité des particules dans le faisceau d'un accélérateur est beaucoup plus faible que la densité des noyaux dans une cible fixe. Pour obtenir un taux d'interaction décelable, il faut donc disposer de courants accélérés très intenses, ce qui a conduit au développement des techniques de stockage et d'accumulation des faisceaux. Il s'agit d'un synchrotron dont on garde le champ magnétique constant. Deux faisceaux d'électrons et de positrons peuvent y circuler simultanément. L'anneau de stockage peut fonctionner en anneau de collision.
  • L'Anneau de Collision d'Orsay (ACO) a fonctionné du début des années 1960 jusqu'en 1988. Pour provoquer des collisions entre des bouffées d'électrons et des bouffées de positrons, les particules étaient injectées à la cadence d'une dizaine de bouffées par seconde. Il faut des milliers de bouffées pour former un faisceau stocké. Au total, l'injection des deux types de particules durait environ une demi-heure.
  • Les anneaux de stockage à intersection (Intersecting Storage Rings ; ISR) permettent de stocker dans deux anneaux séparés un seul type de particule. Les faisceaux de protons se croisent en 6 ou 8 points. Les ISR (CERN, 1971-1984) étaient un exploit technique mais les résultats de leur physique n'ont pas été à la hauteur. Ils ont permis d'observer la production de particules à grande impulsion transverse.

Les machines à rayonnement synchrotron

Lorsqu'un synchrotron fait tourner des faisceaux d'électrons, l'énergie possible est limitée par le rayonnement inhérent au mouvement circulaire des électrons, qui croît très vite et dissipe l'énergie reçue par les particules. Cette radiation électromagnétique est connue sous le nom de « Bremsstrahlung » dans le cas d'un tube à rayons X. Dans les accélérateurs d'électrons, des cavités résonantes accélératrices fournissent l'énergie perdue par le rayonnement synchrotron (ou synchrotronique).

De rayonnement photonique parasitaire (J. Blewett, 1947), la lumière synchrotron est devenue désirable. Des dispositifs scientifiques (onduleurs, anneaux de stockage d'électrons) ont été construits pour paramétrer et utiliser ce rayonnement, dont l'intensité, le spectre (lumière visible, ultraviolet du vide, rayons X, rayons gamma) permettent une exploitation en physique, en chimie, en microlithographie des circuits intégrés, dans l'étude de la matière vivante.

Les synchrotrons produisent des ondes magnétiques de toutes longueurs d'onde, utilisées par un nombre important de méthodes d'analyse de la lumière. Ces machines sont constituées d'une part d'un injecteur et d'un anneau de stockage d'une circonférence de cent à plusieurs centaines de mètres, dans lequel les électrons tournent 350 000 fois par seconde à une vitesse proche de celle de la lumière, et, d'autre part, de lignes de lumière et de postes expérimentaux périphériques qui utilisent la lumière émise par les électrons lors de passage dans des aimants de courbure ou des chicanes magnétiques (wigglers et onduleurs) placées sur leur trajectoire, lumière dénommée rayonnement synchrotron. Le rayonnement des synchrotrons de troisième génération est mille milliard de fois plus brillant que les rayons émis par des équipements de laboratoire comme les tubes à rayons X.

Les trois plus grands synchrotrons générateurs de lumière synchrotron sont le SPring-8 (8 GeV) à Hyogo, Japon, l'APS (Advanced Photon Source, 7 GeV), à Argonne, USA, et l'ESRF European synchrotron radiation facility, 6 GeV, à Grenoble, France.

Le Synchrotron SOLEIL (Source optimisée de Lumière d'énergie intermédiaire du Lure) est le second site d'un synchrotron de troisième génération en France, sur le plateau de Saclay, Essonne. Le Synchrotron SOLEIL est composée de deux accélérateurs (un accélérateur linéaire et un accélérateur circulaire booster) et d'un anneau de stockage, polygone de 354 m de périmètre.

Page générée en 0.100 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise