Masse de la Terre - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

La masse de la Terre (M) est estimée à 5,9736×1024 kg. Elle est obtenue à partir de la connaissance très précise fournie par la géodésie spatiale de la constante géocentrique (GM) et de la connaissance beaucoup moins précise fournie par la physique de la constante de gravitation (G) de Newton.

Méthodes directes pour déterminer GM

Cet article décrit comment on est arrivé à déterminer de manière de plus en plus précise la masse de la Terre, à partir des premières idées formulées par Isaac Newton à la fin du XVIIe siècle jusqu'à l'époque contemporaine. Une grande partie de l'historique de cette détermination concerne l'histoire de la géodésie et se trouve intimement liée à la détermination de la figure de la Terre, l'autre partie appartenant à l'histoire de la physique et la série d'expériences ayant eu pour but de déterminer la constante de gravitation, initiée tout à la fin du XVIIIe siècle par Henry Cavendish.

Utilisation de la Troisième Loi de Kepler

En effet, on peut a priori envisager deux types de mesures pour déterminer le produit GM. D'une part, la troisième Loi de Kepler appliquée au mouvement d'un satellite (masse Ms) autour de la Terre (masse M) s'écrit

G (M+Ms) = 4π²a³/τ².

Ici G désigne la constante d'attraction universelle, a est le demi-grand axe de l'ellipse de Kepler, et τ est la période de révolution orbitale. Lorsque la masse du satellite est négligeable (Ms ≪ M), on obtient GM ≅ 4π²a³/τ². Bien sûr, afin d'obtenir une valeur plus précise du produit G (M+Ms), on doit apporter des corrections (calculables) pour tenir compte d'effets perturbateurs. Il n'en demeure pas moins que des mesures astronomiques de a et τ, et éventuellement une mesure indépendante de GMs, permettent de déterminer avec précision le produit GM. Ce dernier est souvent appelé constante de gravitation géocentrique, ou simplement constante géocentrique.

Utilisation de pendules

À gauche : pendule simple (mathématique) ; à droite : pendule composé (physique). Le point de suspension O et le point de balancement O' sont réciproques : lors d'une translation du point de suspension en O', le point O devient centre de balancement, de sorte que la période d'oscillation du pendule ne change pas. En effet, O' se trouve de O à la distance ℓ, le long de la direction OG, où G est le centre de gravité du pendule.

D'autre part, on peut aussi déterminer cette constante GM au moyen de mesures pendulaires. En simplifiant un peu, quitte à apporter des corrections lors d'une détermination précise, on néglige la force centrifuge et on suppose la Terre sphérique. L'intensité de l'accélération gravifique à la surface terrestre vaut alors g = GM/R², où R est le rayon moyen de la Terre. Pour un pendule simple de longueur ℓ, cette accélération produit une période d'oscillation T = 2π√(ℓ/g). Par conséquent, une connaissance de la longueur ℓ et une mesure de la période T permet de déterminer le produit GM au moyen de la formule

GM = 4π²ℓR²/T².

Le concept de pendule simple est une abstraction mathématique. En réalité, on utilise toujours un pendule composé. Ce dernier se compose d'un corps massique de forme géométrique en principe arbitraire, mais en fait soigneusement étudiée, oscillant autour d'un axe horizontal en un point fixe. La période d'oscillation d'un tel pendule est fournie par T = 2π√[I/(mgd)], où I est le moment d'inertie du corps de masse m par rapport à l'axe de balancement et d est la distance de cet axe au barycentre. On définit la longueur synchrone ℓ du pendule composé comme la longueur du pendule simple ayant la même période, soit ℓ = I/(md) pour ℓ>d.

Dans leurs expériences pendulaires, des observateurs comme Richer, Bouguer, Maupertuis et d'autres avaient l'habitude d'employer la demi-période T1/2 plutôt que la période T. Un « pendule battant la seconde » était un pendule pour lequel il s'écoulait une seconde de temps entre deux passages successifs de la masse à sa position la plus basse. Avec g = 9,81 m/s², la longueur d'un pendule battant la seconde est donc ℓ1s = g/π² ≅ 0,994 m (soit 440,6 lignes). Du temps de Huyghens et Richer, on n'avait sans doute pas prévu l'utilisation du pendule comme balance, mais vers cette époque l'horloge à balancier, autrement dit la pendule, commençait à être employée comme garde-temps par les astronomes. C'est dans cet ordre d'idées qu'il faut comprendre l'observation de Richer en 1672, à savoir qu'un(e) pendule battant exactement la seconde à Paris (à 49° de latitude Nord) retardait environ deux minutes et demie par jour à Cayenne (à 5° de latitude Nord). La période du pendule était donc plus longue qu'une seconde à Cayenne. Pour la ramener à une seconde à Cayenne, Richer devait raccourcir la longueur du pendule de plus d'une ligne, de manière à maintenir le même rapport ℓ/g qu'à Paris. Comme Varin et Des Hayes constatèrent des déviations similaires un peu plus tard à Gorée (15°N), l'idée avait germé à l'Académie royale des sciences de Paris, peu avant la parution des Principia de Newton, qu'un corps pèserait moins à l'équateur qu'aux pôles. Il est implicite dans cette conjecture que le pendule peut servir non seulement comme garde-temps, mais aussi comme instrument permettant des pesées. On raconte que Newton aurait accidentellement entendu parler en 1682 de la découverte de Richer lors d'une réunion de la Société Royale de Londres. Il calcula les poids relatifs, selon sa théorie non encore publiée, d'un même corps à Paris, Gorée et Cayenne et obtint un bon accord avec les résultats des mesures pendulaires, confirmant ainsi simultanément la théorie de l'aplatissement et la théorie de la gravitation.

Suggestions d'Isaac Newton

Portrait d'Isaac Newton (1643–1727) par Godfrey Kneller (1689)

Plus tard, Isaac Newton suggéra deux méthodes différentes pour déterminer séparément soit G, soit M. Ces procédés, qui allaient être appliqués tous les deux au cours des décennies et siècles à venir, consistaient (1) soit à mesurer au laboratoire l'attraction entre deux corps de masses connues et séparés l'un de l'autre d'une distance connue, dans le but de déterminer G, (2) soit de mesurer la déviation du fil à plomb près d'une montagne de masse calculable M' pour estimer le rapport M/M', et par conséquent la masse M de la Terre.

Les premières tentatives pour déterminer la masse de la Terre par la méthode (2) sont celles de Bouguer, lors de l'expédition au Pérou (1735-1744) . La première expérience pour mesurer au laboratoire G, et donc M, ne fut tentée et réussie qu'une soixantaine d'années plus tard. C'est la célèbre expérience de Henry Cavendish datant de 1798.

Le fait qu'une détermination directe de la constante gravitationnelle G ne fut tentée que bien après la mort de Newton résulte sans doute d'une sous-estimation malencontreuse des possibilités pratiques de réaliser une telle expérience. En effet, Newton considéra l'attraction entre deux sphères (chacune possédant une densité égale à celle de la densité moyenne de la Terre et un diamètre de 1 pied) et écrivit que « si elles étaient distantes l'une de l'autre ne fût-ce que de 1/4 de pouce, elles ne se rejoindraient pas sous l'action de leur attraction mutuelle, même dans des espaces dépourvus de résistance en un temps plus court qu'un mois... À vrai dire, même des montagnes entières ne seront pas suffisantes pour produire un quelconque effet perceptible ».

Rappelons que Newton avait établi dans ses « Principia » que l'attraction gravifique à l'extérieur d'une configuration sphérique étendue est la même que celle d'un point concentrant toute la masse qui serait situé au centre de la sphère. En un point intérieur à la sphère, cette proposition reste valable à condition de ne considérer que la masse comprise à l'intérieur de la sphère concentrique passant par le point intérieur en question. Il s'ensuit que les couches sphériques extérieures n'exercent pas d'effet gravifique sur un point intérieur. En vertu de ce théorème, l'intensité de la gravité à la surface de la Terre, supposée sphérique, peut s'écrire

g = GM/R² = (G x 4πR³ρ/3)/R² = 4πGρR/3.

Ne connaissant ni G ni la densité moyenne ρ de la Terre, cette dernière relation fut de peu d'intérêt pratique pour Newton. Toutefois, par un raisonnement heuristique, il était arrivé à la conclusion que la densité moyenne devait être comprise entre 5 et 6 fois celle de l'eau. Voici son raisonnement : Tout ce qui est plus léger doit flotter sur ce qui est plus lourd. En particulier, tout ce qui est plus léger que l'eau devrait flotter à la surface des mers. La densité moyenne de la Terre est donc supérieure à celle de l'eau. Elle doit aussi être supérieure à celle des roches se trouvant à la surface de la Terre, qui sont environ deux fois plus denses que l'eau. Elle doit encore être supérieure à celle des roches qu'on rencontre dans les mines profondes, qui sont en général environ trois à quatre fois, et parfois même cinq fois plus denses que l'eau. Par conséquent, la Terre devrait en moyenne être environ cinq à six fois plus dense que si elle consistait entièrement d'eau. Ayant ainsi une estimation de <ρ>, Newton aurait aisément pu trouver l'ordre de grandeur de G. Il est donc étonnant qu'il se soit si grossièrement trompé sur le temps que mettent deux sphères à entrer en contact sous l'effet de leur attraction mutuelle.

Page générée en 0.006 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise