Aérodynamique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Test aérodynamique d'un Ford Flex.

L'aérodynamique est une branche de la dynamique des fluides qui porte principalement sur la compréhension et l'analyse des écoulements d'air, ainsi qu'éventuellement sur leurs effets sur des éléments solides qu’ils environnent. L'aérodynamisme (terme non technique) qualifie un corps en mouvement dans l’air. Le champ d’études peut se subdiviser en aérodynamiques incompressible et compressible en fonction du nombre de Mach, c'est-à-dire en fonction du rapport entre la vitesse de l'écoulement et celle du son.

  • L’aérodynamique incompressible concerne les écoulements pour lesquels le nombre de Mach est inférieur à 0,3 environ, et se placer dans cette classe d'écoulements permet de prendre certaines hypothèses simplificatrices lors de l'étude de ces écoulements.
  • L’aérodynamique compressible quant à elle se subdivise en aérodynamique  : subsonique à Mach compris entre 0,3 et le Mach critique, ce qui correspond à une vitesse d'écoulement localement supérieure à la vitesse du son ; transsonique à Mach compris entre le Mach critique et 1 ; supersonique à Mach entre 1 et 5 et hypersonique au-delà.

L'aérodynamique s'applique aux véhicules en mouvement dans l'air (aérodynes, automobiles, trains), aux systèmes de propulsion (hélices, rotors, turbines, turboréacteurs) et aux installations fixes dans un air en mouvement subissant les effets du vent (bâtiments, tours, ponts) ou destinés à la production d'énergie (éoliennes).

Modèle mathématique

L'aérodynamique est une science qui fait partie de la mécanique des fluides, appliquée au cas particulier de l'air. À ce titre, les modèles mathématiques qui s'appliquent sont :

Bilan des traînées et Puissance de vol

Nous considérerons ici seulement l’aérodynamique en régime subsonique (pas de compressibilité). La connaissance des forces agissantes et résultantes sur un profil d’aile permet d’en déduire le comportement dans les différentes phases du vol.

La traînée totale

En aérodynamique, il est d’usage de décomposer la traînée totale d’un avion en trois grandes catégories :

  1. la traînée induite (par la portance)
  2. la traînée parasite que l’on décompose elle-même en :
    • traînée de frottement
    • traînée de forme ou traînée de pression
    • traînée d’interférence
  3. la traînée de compressibilité, ou traînée d'onde.

Cette multiplicité de dénomination est un découpage pratique visant à mettre en avant la contribution à la traînée de tel ou tel phénomène aérodynamique. Par exemple, la traînée induite renvoie à la notion de l'effort induit par la portance de l'aile. La traînée d'onde renvoie à l'idée de dissipation au niveau de l'onde de choc.

En conséquence, Il convient de garder en mémoire qu'en termes physiques, seuls deux mécanismes contribuent à la traînée : le bilan de pression et le frottement pariétal (tangentiel). Ainsi, si on considère un élément de surface élémentaire de l'avion dS au point M muni d'une normale \tilde{n} et d'une tangente \tilde{t}, l'effort élémentaire sur cette surface s'écrit :

\tilde{F}= (p(M) \tilde{n} + T_{w}\tilde{t}) dS

On voit que si on connaît en tout point de la surface de l'avion la pression p(M) et le frottement Tw(M), on est en mesure d'exprimer l'ensemble des efforts aérodynamiques s'exerçant sur celui-ci. Pour ce faire, il suffit d'intégrer \tilde{F} sur toute la surface de l'avion. En particulier, la traînée s'obtient en projetant \tilde{F} sur un vecteur unitaire \tilde{u} opposé à la vitesse de l'avion. On obtient alors :

F=\int_{S}\tilde{F}.\tilde{u}=\int_{S} p(M)\tilde{n}.\tilde{u}dS + \int_{S} T_{w}\tilde{t}.\tilde{u}dS

Dans cette expression de la traînée, le premier terme donne la contribution de la pression. C'est dans ce terme qu'intervient, via une altération du champ de pression, la traînée induite et la traînée d'onde. Le seconde terme regroupe la traînée de frottement, due au phénomène de couche limite

Traînée induite

L'expression complète est traînée induite par la portance. Elle est proportionnelle au carré du coefficient de portance (Cz en français, Cl en anglais), et inversement proportionnelle à l'allongement de l'aile. Elle est causée par tout ce qui crée de la portance. La forme en plan de l'aile et le calage des profils joue également : la traînée induite minimale est obtenue en théorie par une distribution de portance elliptique en envergure.

Calcul de la résistance induite Ri :

R_i = \frac{1}{2} \rho  V^2  S C_i

avec S surface de référence et Ci coefficient de traînée induite :

avec λ = allongement effectif de l'aile (allongement géométrique corrigé) et e = Oswald factor, inférieur à 1 (valeur variable, environ 0,75 à 0.85), pour tenir compte d'une répartition de portance en envergure non optimale.

La traînée induite est maximale à Cz élevé, donc à basse vitesse et/ou à haute altitude (jusqu’à plus de 50 % de la traînée totale). Le mécanisme de la traînée induite a été théorisé par Ludwig Prandtl (1918) de la manière suivante : Pour avoir une portance, il faut une surpression relative à l’intrados de l’aile et/ou une dépression relative à l’extrados de l’aile. Sous l'effet de cette différence de pression, l’air passe directement de l’intrados à l’extrados en contournant l'extrémité de l'aile. Il en résulte que, sous l’intrados, le flux d’air général se trouve dévié de quelques degrés vers l’extrémité de l’aile, et que sur l’extrados le flux d’air se trouve dévié vers le centre de l’aile. Lorsque les flux respectifs de l’intrados et de l’extrados finissent par se rejoindre au bord de fuite de l’aile, leurs directions divergent, ce qui cause à la fois la traînée induite et des tourbillons en arrière du bord de fuite.[réf. souhaitée]

La puissance de ces tourbillons est maximale à l’extrémité de l’aile (tourbillons marginaux). L'énergie invisible contenue dans ces masses d'air en rotation constitue un danger pour la navigation aérienne. Elle impose une distance de séparation minimale entre avions, spécialement pour des avions légers suivant des avions de ligne.

La traînée induite est une composante importante de la traînée totale, notamment aux basses vitesses (forts coefficients de portance, et de même pour les voiles de bateaux). Réduire la traînée induite suppose de diminuer le Cz de vol (diminuer la charge alaire), augmenter l'allongement effectif et répartir la portance de façon décroissante en envergure (répartition elliptique).

Concrètement, c’est pour diminuer la traînée induite que :

  • les planeurs ont des ailes à grand allongement,
  • les avions rapides ont des ailes dont la forme en plan et le vrillage des profils donne une répartition de portance proche de l'ellipse :
    • soit un trapèze d'effilement voisin de 0.5,
    • soit une ellipse comme l'aile du Spitfire. Il semble néanmoins que le plan en ellipse n'amène pas d'avantage vraiment significatif ; il n'a pas été repris depuis.
  • Les avions de ligne qui volent à Mach élevé (0.85) présentent un effilement supérieur, de l'ordre de 0.3, à cause de l'angle de flèche des ailes (environ 25-30°) qui a pour effet de surcharger les extrémités de la voilure.
  • les extrémités d’ailes des Airbus, et de certains Boeing récents, portent des ailettes verticales ou winglets qui augmentent l'allongement effectif en récupérant une partie de l’énergie du tourbillon marginal.

Traînée de frottement

Dans l’écoulement d’un fluide sur un plan on constate au voisinage immédiat du plan un ralentissement du fluide. L’épaisseur où le fluide est ralenti s’appelle la couche limite et varie de quelques dixièmes de mm en écoulement laminaire à plus ou moins 10 mm en écoulement turbulent. Dans la couche limite les molécules d'air sont ralenties, ce qui se traduit en une perte d'énergie qui doit être compensée par l’énergie fournie par la propulsion de l’avion.

Nombre de Reynolds (à développer) \text{Re} = \frac{V L}\nu avec

V : vitesse en m/s
L : longueur du corps ou corde du profil en m,
ν : viscosité cinématique du fluide (variable avec la température, environ 1.15 10e-6 à 15°C).

Traînée de forme

La résistance aérodynamique d’un objet dépend de sa forme. Si l’on compare un plan perpendiculaire à l'écoulement à une sphère et à une forme en goutte d’eau, on constate que la sphère présente 50 % de la résistance du plan, et la goutte d’eau à peine 5 % de la résistance du plan. La traînée de forme est minimale quand l'écoulement n'est pas décroché. Les variations de section brutales du corps amènent des décollements, de la turbulence et donc de la traînée. Afin de réduire ces turbulences, il faut "profiler" le corps.

Traînée de profil

Le coefficient de traînée d'un profil, valable pour une incidence, un allongement et un Nombre de Reynolds donnés, est la somme de la traînée de frottement et de la traînée de forme (décollements). Un corps bien profilé a une composante de traînée de forme nettement plus faible que sa traînée de frottement. Les avions les mieux profilés (les planeurs) ont un coefficient de traînée global rapporté à leur surface mouillée à peine supérieur au coefficient de frottement d'une plaque plane de même surface.

Traînée d’interférence

La distribution de portance en envergure est localement perturbée et présente des pics (à l'emplanture) et des manques (au niveau du fuselage, entre ces deux pics).

Traînée de compressibilité

Traînée engendrée par des phénomènes spécifiques rencontrés lorsque les écoulements imposent une variation de densité au fluide, comme par exemple les ondes de chocs en aérodynamique transsonique et supersonique.

La puissance totale de vol

La puissance de vol est le produit de la somme des traînées par la vitesse :

P = RtotV

avec Rtot en newton et P en Watt

La puissance résistante (l'énergie dépensée par unité de temps) est en Watts :

P = F \times V = \frac{1}{2} \times \rho_{air}\times S \times C_x \times V^3

(En revanche la puissance liée à la portance est nulle, la vitesse lui étant par définition orthogonale. Seul le Cx intervient dans la formule de puissance.)

Puissance minimale de vol

La traînée de frottement varie (et augmente) à peu de choses près (influence du Reynolds) avec le carré de la vitesse. Par contre la traînée induite diminue avec la vitesse et tend vers zéro à très grande vitesse. Il existe une vitesse, supérieure à la vitesse de décrochage mais inférieure à la vitesse de finesse max où la puissance de vol est minimale.

Page générée en 0.155 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise