Le profil d'un élément aérodynamique est le contour de cet élément dans un fluide en mouvement relatif. Dans le cas d'une aile d'avion, d'une pale d'hélice ou de rotor, le profil est le contour de la coupe transversale ou "section", qui est constante ou variable d'un bout à l'autre de l'élément.
Les profils d'ailes destinés à produire une portance à des vitesses subsoniques ont généralement un bord d'attaque arrondi, une épaisseur maximale placée vers le tiers avant, et un bord de fuite fin sur l'arrière. La distance du bord d'attaque au bord de fuite s'appelle la corde.
Le rapport de l'épaisseur maximale du profil (ép ou t en anglais) à sa longueur s'appelle l'épaisseur relative.
La ligne moyenne du profil (à mi-distance du dessus et du dessous) est généralement courbée ou "cambrée" dans la direction de la portance désirée. La distance entre la corde et le sommet de la ligne moyenne s'appelle la flèche. Le rapport de la flèche à la corde s'appelle la cambrure.
Les voiles d'un navire, les stabilisateurs d'un sous-marin, la dérive, la quille, le safran d'un voilier, l'hélice d'un avion, le rotor d'un hélicoptère, mais aussi les coquilles de palourdes, les nageoires des poissons et les rémiges des oiseaux peuvent être décrits selon ce modèle.
Le profil détermine les forces aérodynamiques qui s'exercent sur l'élément quand il en est mouvement dans l'air. Un objet suffisamment profilé (en écoulement non décroché), calé avec une incidence positive dans un fluide en mouvement, produit une force de portance : les profils d'ailes sont conçus pour produire cette portance de la manière la plus efficace, avec le minimum de traînée. La conception et le choix d'un profil d'aile est l'un des aspects les plus importants de la conception aéronautique, car elle détermine la forme et la taille des ailes et des stabilisateurs, et partant de là, les dimensions de l'aéronef tout entier. L'étude aérodynamique des profils d'ailes se fait habituellement par le calcul (en 2 D, à allongement infini ou en 3 D) et en soufflerie, avec un allongement fini.
Un élément déterminant est le Nombre de Reynolds noté Re : c'est le rapport entre les forces d'inertie des molécules du fluide, et les forces de viscosité de ce fluide. La valeur de Re dépend des dimensions du corps (longueur ou corde), de la vitesse de déplacement (V) et de la viscosité cinématique du fluide (nu).
Re est généralement très faible dans les milieux denses et visqueux, et plus élevé dans les milieux fluides et peu denses. En aéronautique, Re est généralement exprimé en millions (106).
Le coefficient de frottement turbulent (Cf) diminue quand le nombre de Reynolds augmente :
L'efficacité d'un profil (le rapport portance/traînée) augmente avec le nombre de Reynolds.
Le coefficient de profil (Cd) dépend du coefficient de frottement et de l'effet de l'épaisseur du profil.
Un profil en mouvement présente généralement une partie amont (près du bord d'attaque) en écoulement "laminaire" (faible coefficient de frottement) et une partie aval en écoulement "turbulent" (coefficient de frottement plus fort). La position longitudinale de la transition entre ces deux parties dépend :
Les profils dits "laminaires" sont des profils à bord d'attaque plus fin et à épaisseur maximale reculée (vers 40 à 45 % de la corde) dont la zone en écoulement laminaire est plus étendue que celle des profils dits "classiques "ou "turbulents". La transition peut reculer jusqu'à 60 ou 70 % de la corde. L'écoulement laminaire n'est exploitable que dans une plage donnée de coefficients de portance et d'angles d'attaque. En dehors de cette plage, la traînée est plus élevée que celle d'un profil classique. Ce sont des profils nécessitant plus de précision à la fabrication, plus de soin (état de surface) et moins tolérants en utilisation (plage de vitesse optimale +/- étroite).
On distingue plusieurs régimes de vol dans lesquels un profil fonctionne de manière très différente :