![]() Articles de physique quantique |
Théorie quantique |
Électrodynamique quantique |
Mécanique quantique |
Théorie des champs |
Modèle standard |
Statistiques quantique |
Bose-Einstein |
Fermi-Dirac |
Maxwell-Boltzmann |
Physiciens |
Bohr - de Broglie |
Bose - Einstein |
Fermi - Dirac |
Heisenberg - Pauli |
Schrödinger - Feynman |
L'équation de Schrödinger, conçue par le physicien autrichien Erwin Schrödinger en 1925, est une équation fondamentale en physique quantique non-relativiste. Elle décrit l'évolution dans le temps d'une particule massive non-relativiste, et remplit ainsi le même rôle que la relation fondamentale de la dynamique en mécanique classique.
Au début du XXe siècle, il était devenu clair que la lumière présente une dualité onde-corpuscule, c'est-à-dire qu'elle pouvait se manifester, selon les circonstances, soit comme une particule, le photon, soit comme une onde électromagnétique. Louis de Broglie proposa de généraliser cette dualité à toutes les particules connues bien que cette hypothèse eût pour conséquence paradoxale que les électrons devaient pouvoir produire des interférences comme la lumière, ce qui fut vérifié ultérieurement par l'expérience. Par analogie avec le photon, Louis de Broglie associa ainsi à chaque particule libre d'énergie E et de quantité de mouvement p une fréquence ν et une longueur d'onde λ :
L'équation de Schrödinger, trouvée par le physicien Erwin Schrödinger en 1925, est une équation d'onde qui généralise l'approche de de Broglie ci-dessus aux particules massives non-relativistes soumises à une force dérivant d'une énergie potentielle, dont l'énergie mécanique totale est classiquement :
Le succès de l'équation, déduite de cette extension par utilisation du principe de correspondance, fut immédiat quant à l'évaluation des niveaux quantifiés d'énergie de l'électron dans l'atome d'hydrogène, car elle permit d'expliquer les raies d'émission de l'hydrogène : séries de Lyman, Balmer, Bracket, Paschen, etc.
L'interprétation physique correcte de la fonction d'onde de Schrödinger ne fut donnée qu'en 1926 par Max Born. En raison du caractère probabiliste qu'elle introduisait, la mécanique ondulatoire de Schrödinger suscita initialement de la méfiance chez quelques physiciens de renom comme Albert Einstein, pour qui " Dieu ne joue pas aux dés ".
Le schéma conceptuel utilisé par Schrödinger pour dériver son équation repose sur une analogie formelle entre l'optique et la mécanique :
Ce parallèle avait été noté dès 1834 par Hamilton, mais celui-ci n'avait alors par de raison de douter de la validité de la mécanique classique. Après l'hypothèse de de Broglie de 1923, Schrödinger s'est dit[1] : l'équation de l'eikonale étant une approximation de l'équation d'onde de l'optique ondulatoire, cherchons l'équation d'onde de la "mécanique ondulatoire" (à construire) dont l'approximation soit l'équation de Hamilton-Jacobi. Ce qu'il a fait, d'abord pour une onde stationnaire (E = cte), puis pour une onde quelconque[2].
Remarque : Schrödinger avait en fait commencé par traiter le cas d'une particule relativiste - comme d'ailleurs de Broglie avant lui[3]. Il a alors obtenu l'équation connue aujourd'hui sous le nom de Klein-Gordon, mais son application au cas du potentiel coulombien donnant des niveaux d'énergie incompatibles avec les résultats expérimentaux de l'atome d'hydrogène[4], il se serait rabattu sur le cas non-relativiste, avec le succès que l'on connait.
Une fois établi le parallèle entre l'optique et la mécanique hamiltonienne - i.e. la partie non-triviale du raisonnement -, la fin de la dérivation est relativement élémentaire. En effet, l'équation d'onde satisfaite par l'amplitude spatiale d'une onde monochromatique de pulsation ω fixée dans un milieu d'indice n lentement variable s'écrit :
On introduit le nombre d'onde k dans le milieu d'indice n, tel que :
On obtient alors l'équation de Helmholtz :
La longueur d'onde dans le milieu est définie par :λ = 2π / k. L'équation de Helmholtz se réécrit :
On utilise alors la relation de de Broglie pour une particule non-relativiste, pour laquelle la quantité de mouvement p = m v :
Or, l'énergie cinétique s'écrit pour une particule non-relativiste :
d'où l'équation de Schrödinger stationnaire :
En introduisant le quantum d'action
Il ne reste plus qu'à réintroduire le temps t en explicitant la dépendance temporelle pour une onde monochromatique, puis en utilisant la relation de Planck-Einstein
On obtient finalement l'équation de Schrödinger générale :
En mécanique quantique, l'état à l'instant t d'un système est décrit par un élément
L'évolution temporelle de
|
où
Il est à noter que, contrairement aux équations de Maxwell gérant l'évolution des ondes électromagnétiques, l'équation de Schrödinger est non relativiste. Notons également que cette équation ne se démontre pas : c'est un postulat. Elle a été supposée correcte après que Davisson et Germer eurent confirmé expérimentalement l'hypothèse de Louis de Broglie.
L'équation de Schrödinger étant une équation vectorielle on peut la réécrire de façon équivalente dans une base particulière de l'espace des états. Si on choisit par exemple la base
alors la fonction d'onde
où
Sous cette forme on voit que l'équation de Schrödinger est une équation aux dérivées partielles faisant intervenir des opérateurs linéaires, ce qui permet d'écrire la solution générique comme somme de solutions particulières. L'équation est dans la grande majorité des cas trop compliquée pour admettre une solution analytique de sorte que sa résolution est approchée et/ou numérique.
Les opérateurs apparaissant dans l'équation de Schrödinger sont des opérateurs linéaires ; il s'ensuit que toute combinaison linéaire de solutions est solution de l'équation. Cela mène à favoriser la recherche de solutions qui ont un grand intérêt théorique et pratique : à savoir les états qui sont propres de l'opérateur hamiltonien.
Ces états sont donc solutions de l'équation aux états et valeurs propres,
qui porte parfois le nom d’équation de Schrödinger indépendante du temps. L'état propre
Les valeurs de l'énergie peuvent être discrètes comme les solutions liées d'un puits de potentiel (par ex. niveaux de l'atome d'hydrogène) ; il en résulte une quantification des niveaux d'énergie. Elles peuvent aussi correspondre à un spectre continu comme les solutions libres d'un puits de potentiel (par ex. un électron ayant assez d'énergie pour s'éloigner à l'infini du noyau de l'atome d'hydrogène).
Il arrive souvent que plusieurs états
D'une façon générale, la détermination de chacun des états propres de l'hamiltonien,
Une solution de l'équation de Schrödinger peut alors s'écrire très généralement comme une combinaison linéaire de tels états :
Selon les postulats de la mécanique quantique,
La recherche des états propres de l'hamiltonien est en général complexe. Même le cas analytiquement soluble de l'atome d'hydrogène ne l'est rigoureusement sous forme simple que si l'on néglige le couplage avec le champ électromagnétique qui va permettre le passage des états excités, solutions de l'équation de Schrödinger de l'atome, vers le fondamental.
Certains modèles simples, bien que non tout à fait conformes à la réalité, peuvent être résolus analytiquement et s'avèrent très utiles :
Dans les autres cas, il faut faire appel aux diverses techniques d'approximation :
La généralisation au domaine relativiste mena à l'équation de Klein-Gordon, puis à l'équation de Dirac ; cette dernière établit naturellement l'existence du spin et des antiparticules. Cependant, il n'existe aucune interprétation entièrement cohérente de ces équations d'ondes relativistes dans le cadre d'une théorie décrivant une seule particule ; le cadre pertinent pour le théorique quantique relativiste est la théorie quantique des champs.