![]() Articles de physique quantique |
Théorie quantique |
Électrodynamique quantique |
Mécanique quantique |
Théorie des champs |
Modèle standard |
Statistiques quantique |
Bose-Einstein |
Fermi-Dirac |
Maxwell-Boltzmann |
Physiciens |
Bohr - de Broglie |
Bose - Einstein |
Fermi - Dirac |
Heisenberg - Pauli |
Schrödinger - Feynman |
L'équation de Dirac est une équation formulée par Paul Dirac en 1928 dans le cadre de sa mécanique quantique relativiste de l'électron.
Cette équation décrit le comportement de particules élémentaires de spins demi-entiers, comme les électrons. Dirac cherchait à transformer l'équation de Schrödinger afin de la rendre invariante par l'action du groupe de Lorentz, en d'autre termes à la rendre compatible avec les principes de la relativité restreinte.
Cette équation prend en compte de manière naturelle la notion de spin introduite peu de temps avant et permit de prédire l'existence des antiparticules. En effet, outre la solution correspondant à l'électron, il découvre une nouvelle solution correspondant à une particule d'énergie négative et de charge opposée à celle de l'électron.
En 1932 Carl Anderson, alors qu'il étudiait des photons de haute énergie en provenance de l'espace, constate que l'interaction de ces photons avec la chambre à bulles produit une particule qui s'identifie à la particule conjecturée par Dirac, le positron.
Il est par ailleurs tout à fait étonnant que l'opérateur de Dirac, découvert pour des raisons absolument physiques (et théoriques) aura en mathématiques un glorieux avenir par son usage indispensable dans l'un des plus profonds résultats du siècle, le théorème d'Atiyah et Singer démontré dans les années 1960.
Sa formulation exacte est :
![]() |
où m est la masse de la particule, c la vitesse de la lumière,
Il est commun en mécanique quantique de considérer l'opérateur quantité de mouvement
De plus, il est naturel de chercher une formulation covariante, ce qu'on fait en posant γ0 = γ0 = α0 et γi = − γi = α0αi, auquel cas on a (en adoptant les conventions c=1 et
où l'on a adopté la notation de Dirac