Une éolienne est un dispositif qui utilise la force motrice du vent. Cette force peut être utilisée mécaniquement (dans le cas d'une éolienne de pompage), ou produire de l'électricité (dans le cas d'un aérogénérateur).
Une éolienne permet de transformer l'énergie cinétique du vent en énergie électrique. Elle se compose des éléments suivants :
Le mot " éolienne " vient du grec Α?ολος (Éole), le dieu des vents. Le terme signifie également " rapide ", " vif " ou " inconstant ".
Depuis l'Antiquité, les moulins à vent convertissent l'énergie éolienne en énergie mécanique (généralement utilisé pour moudre du grain). De nos jours, on trouve encore des éoliennes couplées à des pompes à eau, généralement utilisées pour irriguer des zones sèches, assécher des zones humides, ou abreuver le bétail.
En 1888, Charles F. Brush construit une petite éolienne pour alimenter sa maison en électricité, avec un stockage par batteries [1].
La première éolienne " industrielle " génératrice d'électricité est développée par le danois Poul La Cour en 1890, pour fabriquer de l'hydrogène par électrolyse. Dans les années suivantes, il crée l'éolienne Lykkegard, dont il aura vendu 72 exemplaires en 1908 [2].
Une éolienne expérimentale de 800 KVA a fonctionné de 1955 à 1963 en France, à Nogent-le-Roi, dans la Beauce. Elle avait été conçue par le Bureau d'Etudes Scientifiques et Techniques de Lucien Romani et exploitée pour le compte d'EDF. Simultanément, deux éoliennes Neyrpic de 130 et 1 000 KW furent testées par EDF à Saint-Rémy-des-Landes (Manche) [3]. Il y eut également une éolienne raccordée au secteur sur les hauteurs d'Alger (Dély-Ibrahim) en 1957.
Cette technologie a été quelque peu délaissée par la suite et il faudra attendre les années 1970 pour que le Danemark reprenne les développements d'éoliennes.
L'efficacité d'une éolienne dépend de son emplacement. En effet, la puissance fournie augmente avec le cube de la vitesse du vent, raison pour laquelle les sites sont d'abord choisis en fonction de la vitesse et la fréquence des vents présents. Un site avec des vents d'environ 30 km/h de moyenne sera environ 8 fois plus productif qu'un autre site avec des vents de 15 km/h de moyenne. Une éolienne fonctionne d'autant mieux que les vents sont réguliers et fréquents.
Un autre critère important pour le choix du site est la constance de la vitesse et de la direction du vent, autrement dit la turbulence du vent. En effet, en règle générale, les éoliennes sont utilisables quand la vitesse du vent est supérieure à une valeur comprise entre 10 et 20 km/h, sans toutefois atteindre des valeurs excessives qui conduiraient soit à la destruction de l'éolienne, soit à des coûts de construction et de maintenance prohibitifs. La vitesse du vent doit donc être comprise le plus souvent possible entre ces deux valeurs pour un fonctionnement optimal de l'éolienne. De même, l'axe de rotation de l'éolienne doit rester la majeure partie du temps parallèle à la direction du vent. Même avec un système d'orientation de la nacelle performant, il est donc préférable d'avoir une direction de vent la plus stable possible pour obtenir un rendement optimal.
Certains sites à proximité d'obstacles sont ainsi à proscrire car le vent y est trop turbulent (arbres, bâtiments, escarpements...).
De manière empirique, on trouve les sites propices à l'installation d'éoliennes en observant les arbres et la végétation. Le site est intéressant s'ils sont constamment courbés par les vents.
Les implantations industrielles utilisent une carte de la vitesse des vents, ou des données accumulées par une station météorologique proche.
En France, un projet est rentable économiquement si la vitesse moyenne annuelle du site est supérieure à 6 ou 7 m/s, soit 21 à 25 km/h. Cette rentabilité dépend de nombreux autres facteurs, dont les plus importants sont le coût de connexion au réseau et le coût des fondations (déterminant dans le cas d'un projet offshore).
Certains sites bien spécifiques augmentent la vitesse du vent et sont donc plus propices à une installation éolienne :
D'autres critères sont pris en compte pour le choix du site.
Dans une installation éolienne, il est préférable de placer la génératrice sur un mât à une hauteur de plus de 10 m jusqu'à environ 100 m, de façon à capter des vents plus forts. Dans les zones où le relief est très complexe, il est possible de doubler la quantité d'énergie produite en déplaçant l'installation de seulement quelques dizaines de mètres. C'est pour cela que l'on étudie et modélise bien souvent les vents avant l'installation d'éoliennes.
L'énergie éolienne est aisément exploitable dans les Grandes plaines nord-américaines, dans les plaines centrales eurasiennes, ainsi que sur la cime de certaines chaînes de montagnes. Les sites soumis aux tempêtes sont également propices aux éoliennes. Mais le plus important potentiel d'énergie éolienne se situe dans les océans, et particulièrement au 40e parallèle sud.
À condition qu'elles soient implantées assez loin de la côte, les éoliennes en pleine mer (offshore) entraînent moins d'impact sur le paysage. L'installation d'éoliennes en mer est beaucoup plus coûteuse qu'à terre : les mâts doivent être étudiés pour résister à la force des vagues et du courant, la protection contre la corrosion (particulièrement importante du fait des embruns) doit être renforcée, l'implantation en mer nécessite des engins spécialisés, le raccordement électrique implique des câbles sous-marins coûteux et fragiles, et la moindre opération de maintenance peut nécessiter de gros moyens. En revanche, une éolienne offshore peut fournir jusqu'à 5 MégaWatt (à comparer aux éoliennes terrestres limitées à 3 MW dans des sites bien ventés). Dans les zones où la mer est peu profonde (par exemple au Danemark), il est assez simple de les installer, et elles ont un bon rendement. L'ensemble des éoliennes (en pleine mer ou terrestres) du Danemark produit, début 2006, 23 % de l'électricité nécessaire au pays[6]. Ce pays est un leader et précurseur dans la construction et l'utilisation de l'énergie éolienne, avec un projet lancé dans les années 1970 pour produire la moitié de l'énergie du pays de cette manière. Alors que les États-Unis ont perdu tout intérêt dans les éoliennes lors de la chute des cours du baril après la crise des années 1970, le Danemark a poursuivi ses efforts, et est finalement devenu le premier exportateur mondial de grandes turbines, qui produisent entre 0,66 et 3 MW chacune.
Le parc éolien de Vindeby, le premier parc éolien en mer au monde, a été construit en 1991 par le fabricant danois Bonus (devenu Siemens Windpower). Le parc de Nysted, un des projets les plus récents, est aujourd'hui le plus puissant parc éolien offshore avec 72 éoliennes et une puissance maximale de 165,6 MW. Voir aussi le projet de Parc éolien de Belwind en mer du Nord et celui de Horns Rev.
Aujourd'hui de grand parcs offshore sont en construction au large de l'Angleterre voir le projet London Array dans la baie de la Tamise, ainsi qu'en Écosse pour une puissance d'environ 4 000 MW au total.
La France ne possède pas de parcs offshore. Même si quelques sociétés ont des projets en cours, le blocage semble être politique.
Le vent est engendré par une différence de température ou de pression. Il est ralenti par les obstacles, et la rugosité du sol, et est généralement plus fort en altitude. Les plaines ont des vents forts parce qu'il y a peu d'obstacles. Les cols de montagne ont eux aussi des vents forts, parce qu'ils canalisent les vents de haute altitude. Dans certains cols, les vents proviennent de l'écart de température entre les deux versants. Les éoliennes installées sur les côtes ou en bordure de mer bénéficient de vents puissants et réguliers, car la surface de l'eau ne constitue pas un obstacle (faible rugosité), et parce que la différence de température mer/terre favorise des vents thermiques.
En environnement urbain, où il est difficile d'obtenir de puissants flux d'air, de plus petits équipements peuvent être utilisés pour faire tourner des systèmes basse tension. Des éoliennes sur un toît fonctionnant dans un système d'énergie distribuée permettent d'alléger les problèmes d'acheminement de l'énergie et de pallier les pannes de courant. De petites installations telles que des routeurs wi-fi peuvent être alimentées par une éolienne qui recharge une petite batterie. En ville, on pourra envisager l'implantation d'éoliennes à axe vertical ou hélicoïdales, qui ont un rendement inférieur mais qui produisent de l'électricité même par vent faible.
Il est aussi possible d'installer des éoliennes sur le toit des tours comme a la defense.
Une éolienne se modélise principalement à partir de ses caractéristiques aérodynamique, mécanique et électrotechnique. En pratique, on distingue aussi le "grand éolien", qui concerne les machines de plus de 250 kW, de l'éolien de moyenne puissance (entre 36 kW et 250 kW) et du petit éolien (inférieur à 36 kW).
Une éolienne à axe horizontal est une hélice perpendiculaire au vent, montée sur un mât. La hauteur est généralement de 20 m pour les petites éoliennes, et supérieure au double de la longueur d'une pale pour les modèles de grande envergure. Aujourd'hui les plus grandes éoliennes mesurent jusqu'à 180m en bout de pale avec un moyeu à 120m pour une puissance de 6 MW.
La puissance du vent contenue dans un cylindre de section
La puissance récupérable est inférieure, puisque l'air doit conserver une énergie cinétique résiduelle pour qu'il subsiste un écoulement. Albert Betz a démontré que l'énergie récupérable était maximale lorsque :
Ceci a pour conséquence que la puissance maximale récupérable est :
Le rendement maximal théorique d'une éolienne est ainsi fixé à
Pour des raisons de sécurité, il est nécessaire d'immobiliser les pales lorsque le vent est très fort. Pour une vitesse de vent donnée, la masse de la turbine est environ proportionnelle au cube de la longueur de ses pales, alors que l'air intercepté par l'éolienne est proportionnel au carré de cette longueur. Les pressions exercées sur une éolienne augmentent donc très rapidement à mesure que sa taille augmente. Ainsi la longueur maximale d'une pale est-elle limitée par la résistance de ses matériaux.
Les coûts de construction et de maintenance d'une éolienne augmentent peu en fonction de sa taille. En limitant tous les coûts, on reste seulement contraint par la résistance des matériaux et de sa fondation. Pour la réalisation des pales, l'un des meilleurs matériaux disponibles actuellement est l'époxy. Le graphite composite permet de construire des éoliennes de 60 m de rayon, suffisantes pour obtenir quelques mégawatts. Les éoliennes plus petites peuvent être construites dans des matériaux plus légers, tels que la fibre de verre, l'aluminium ou le bois laminé.
Les petites éoliennes sont dirigées vers le vent par un aileron arrière, à la manière d'une girouette. Les grandes éoliennes possèdent des capteurs qui enregistrent la direction du vent et actionnent un moteur qui fait pivoter le rotor.
Quand elle tourne face au vent, l'éolienne agit comme un gyroscope, et la précession essaie de faire faire volte-face en avant ou en arrière à la turbine. Chaque pale est soumise à une force de précession maximale lorsqu'elle est verticale et minimale lorsqu'elle est horizontale. Ces changements cycliques de pression sur les pales peuvent vite fatiguer et casser la base des pales ou fausser l'axe de la turbine.
Dans l'optique de réduire les contraintes dues à la précession, les éoliennes modernes ont trois pales, de sorte qu'une seule pale est soumise à une précession maximale à la fois. Le défaut historique majeur des éoliennes était d'avoir un nombre pair de pales, de sorte que deux pales étaient verticales en même temps. Le modèle à deux pales est celui qui reçoit le plus de contraintes.
La plupart des éoliennes artisanales possèdent deux pales, car elles sont fabriquées à partir d'une seule longue pièce courbée de bois ou de métal, montée sur un générateur de récupération, tel qu'un alternateur de voiture ou un moteur de machine à laver.
Les rotors à nombre pair de pales ne nécessitent pas obligatoirement de fixer individuellement chaque pale sur un moyeu. Aussi, beaucoup d'éoliennes commercialisées ont-elles deux pales, car il est plus facile et plus économique d'usiner celles-ci d'un seul tenant. Les éoliennes à trois pales, bien plus efficaces et silencieuses, doivent généralement être montées sur place.
Quand une éolienne puissante possède plus de trois pales, celles-ci sont perturbées par l'air déplacé par la pale précédente. Le rendement s'en trouve réduit.
Les vibrations diminuent quand le nombre de pales augmente. En plus de fatiguer les mécanismes, certaines vibrations sont audibles et provoquent des nuisances sonores. Cependant, les éoliennes possédant moins de pales, plus grandes, fonctionnent à un nombre de Reynolds plus élevé, et sont par conséquent plus efficaces. Le prix d'une éolienne augmentant avec le nombre de pales, leur nombre optimal semble donc être de trois.
Comme le mât produit des turbulences derrière lui, le rotor est généralement placé devant celui-ci. Dans ce cas, le rotor est placé assez loin en avant, et son axe est parfois incliné par rapport à l'horizontale, afin d'éviter que les pales ne viennent heurter le mât. On construit parfois des éoliennes dont le rotor est placé en aval du mât, malgré les problèmes de turbulences, car les pales peuvent ainsi être plus souples et se courber sans risquer de heurter le mât en cas de grand vent, réduisant ainsi leur résistance à l'air.
Les anciens moulins à vent sont équipés de voilures en guise de pales, mais celles-ci ont une espérance de vie très limitée. De plus, leur résistance à l'air est relativement élevée par rapport à la puissance qu'elles reçoivent. Elles font tourner le générateur trop lentement et gaspillent l'énergie potentielle du vent dont la poussée implique qu'elles soient montées sur un mât particulièrement solide. C'est pourquoi on leur préfère aujourd'hui des pales profilées rigides.
Quand une pale est en rotation, la vitesse relative du vent par rapport à la pale est supérieure à sa vitesse propre, et dépend de l'éloignement du point considéré de la pale avec son axe de rotation. Cela explique que le profil et l'orientation de la pale varient dans sa longueur. La composition des forces s'exerçant sur les pales se résume en un couple utile permettant la production d'électricité par l'alternateur, et une force de poussée axiale, répercutée sur le mât par l'intermédiaire d'une butée. Cette poussée peut devenir excessive par vent trop fort ; c'est pourquoi les éoliennes sont alors arrêtées et orientées pour offrir la moindre prise au vent. Des essais sont effectués (2004) pour utiliser des pales cylindriques et bénéficier de l'effet Magnus.
Un essai d'un nouveau type d'éolienne est en cours (2006) sur un bâtiment d'habitation en France à Équihen, dans le Pas-de-Calais : deux groupes de lames fixées sur un axe qui entraîne le générateur.
Plusieurs solutions d’éoliennes à axe vertical ont été expérimentées :
Ce dispositif est installé seulement sur de petites éoliennes ; il modifie les efforts de l'air sur les pales. Il agit de façon à sortir le rotor du lit du vent de façon à diminuer ses effets sur les pales. La force du vent comprime un ressort qui maintient, en temps normal, la tête de l’éolienne verticale.
Il existe des systèmes grâce auxquels les ailes se décalent plus ou moins pour augmenter l'étendue des vitesses d'action. Si la vitesse du vent est basse, les ailes sont complètement déployées, si la vitesse est trop forte, les ailes sont complètement fermées et l'éolienne forme un cylindre.
Un nouveau type d'éolienne est en plein développement du fait de ses avantages : il s'agit d'une turbine à axe vertical de forme cylindrique qui peut facilement être installée sur le toit d'une maison moderne et dont les avantages sont : faible impact visuel, pratiquement pas de bruit et très grande tolérance aux vents forts.
Il ne s’agit plus d’un système de ralentissement, mais d'arrêt complet de l’éolienne.
Ce mécanisme se déclenche automatiquement lorsque la vitesse atteint un certain seuil par l’intermédiaire d’un détecteur de vitesse. En cas de ralentissement du vent, le frein est relâché et l’éolienne fonctionne de nouveau librement. Ce dispositif peut aussi se déclencher lorsqu'un problème de réseau est détecté.
Remarque : Les éoliennes à pas fixe et régulation Stall comportent souvent, par sécurité, deux freins à disques.
Une éolienne utilisée pour fournir de l'électricité aux réseaux délivre des puissances importantes, de l'ordre de 2 MW à l'intérieur des terres et de 5 MW en mer. Cependant, des modèles plus petits sont également disponibles.
C'est ainsi que certains navires sont maintenant équipés d'éoliennes pour faire fonctionner des équipements tels que le conditionnement d'air. Typiquement, il s'agit alors de modèles à axe vertical prévus pour fournir de l'énergie quelle que soit la direction du vent. Une éolienne de ce type délivrant 3 kW tient dans un cube de 2,5 m de côté.
Certaines éoliennes produisent directement de l'énergie mécanique sans passer par la production d'électricité, notamment pour le pompage de l'eau dans des lieux isolés. Ce mode de fonctionnement correspond à celui des moulins à vent d'autrefois, qui entraînaient le plus souvent des meules de pierre ; en effet, la plupart des 20 000 moulins à vent à la fin du XVIIIe siècle en France servaient à la minoterie.
En 2004, les parts de marché mondiales des principaux fabricants d'éoliennes sont les suivantes :
Les principaux fabricants d'éoliennes construisent des machines d'une puissance d'environ 1 MW à 5 MW. Il existe de très nombreux autres fabricants d'éoliennes, parfois de plus petite dimension pour des applications individuelles ou spécialisées. Les principaux fabricants d'éoliennes, principalement originaires du Danemark et d'Allemagne, pays qui ont investi ce secteur de manière très volontariste. Le retard accumulé oblige les grands groupes français à opérer par acquisitions ou prises de participations pour pénétrer sur ce marché (OPA amicale d'AREVA sur 70% du capital de REPower dont il détenait auparavant 30% en janvier 2007). Mais depuis quelques années, le fabricant Français d'éoliennes de petite puissance Vergnet est passé à la moyenne puissance et passera à la grande puissance (diamètre rotor 62m) en 2007.
Ce développement de la capacité de production répond à une demande croissante d'une partie de la population pour une production d'énergie renouvelable.
Selon Hubert Reeves, " chaque éolienne est garante d'un peu moins de gaz carbonique dans l'atmosphère ou d'un peu moins de déchets nucléaires à gérer par les générations à venir ".
L’énergie éolienne est une énergie renouvelable idéale selon Ressources naturelles Canada (lien) parce que :
Selon les détracteurs, plusieurs facteurs freinent l'implantation des parcs de production éoliens :
Sur les sites français, une éolienne produit une puissance moyenne égale à 25% de sa puissance nominale pour un site sur le littoral, et 10 % pour des sites intérieurs moins favorables.Source ADEME.
De ce fait pour produire 1 KWh éolien, il faut en produire 3 thermiques dans le meilleur des cas et 9 dans les cas défavorables. Une politique énergétique basée massivement sur l'éolien entraînerait ainsi paradoxalement une augmentation d'émission de CO2. Les centrales nucléaires ont un démarrage beaucoup trop lent (par mesure de sécurité) pour effectuer ce rôle de régulation. Les ressources hydro-électriques peuvent cependant également assurer ce rôle de régulateur mais en France, les sites sont saturés..[8]. Leif-Erik Langans, de la Ruhr-Universität de Bochum, a ainsi étudié un système de centrale hydraulique à réserve pompée. L'énergie éolienne excédentaire sert à amener l'eau dans un bassin surélevé. En cas de déficit d'énergie, cette réserve d'eau passe au travers de turbines productrices d'électricité. Une autre solution en cours d'évaluation aux États-Unis est le stockage sous forme d'air comprimé dans le sous-sol ou dans de simples conduites (pipelines).