En mathématiques, le produit cartésien de deux ensembles X et Y est l'ensemble de tous les couples, dont la première composante appartient à X et la seconde à Y. On généralise facilement la notion de produit cartésien binaire à celle de produit cartésien fini, qui est alors un ensemble de multiplets, on dit n-uplets pour les éléments d'un produit cartésien de n ensembles. On peut aussi introduire la notion de somme disjointe (ou cartésienne). Pour généraliser aux produits cartésiens infinis, des produits d'une famille quelconque (éventuellement infinie) d'ensembles, on a besoin de la notion de fonction.
Les produits cartésiens doivent leur nom à René Descartes, qui, en créant la géométrie analytique, a le premier utilisé ce que nous appelons maintenant,
Pour tout ensemble A et tout ensemble B, il existe un unique ensemble dont les éléments sont les couples dont la première composante appartient à A et la seconde à B :
Cet ensemble est noté " A x B " (lire " A croix B ") et il est appelé produit cartésien de A par B.
Si on considère couples et produits cartésiens comme une notion primitive, on aura comme axiome cette propriété d'existence et d'unicité. Elle se démontre en théorie des ensembles, pour la représentation des couples choisie.
Si A est l'ensemble { A, R, D, V, 10, 9, 8, 7, 6, 5, 4, 3, 2 } et B l'ensemble { pique, cœur, carreau, trèfle }, alors le produit cartésien de ces deux ensembles est l'ensemble à 52 éléments suivant :
A2 ne doit pas être confondu avec ΔA (lire " delta A "), diagonale de A :
Remarque : La diagonale d'un ensemble se confond avec son carré cartésien si et seulement si cet ensemble est vide ou se réduit à un singleton.
En théorie des ensembles, si on choisit, comme usuellement, la représentation des couples de Kuratowski, les couples dont la première composante est dans A et la seconde dans B sont des éléments de
On peut donc définir le produit cartésien par compréhension, on aura bien sûr besoin des couples, donc, en plus des axiomes précédents, de l'axiome de la paire et du schéma d'axiomes de compréhension :
Comme pour les couples, l'important, c'est leur propriété fondamentale : deux triplets sont égaux si et seulement si leurs premières composantes sont égales entre elles, puis leurs deuxièmes composantes, et enfin leurs troisièmes :
Là encore, cette propriété ne suffit pas à définir la notion de triplet, et là encore, plusieurs définitions incompatibles entre elles sont possibles a priori. On pose habituellement :
Il est défini par :
D'après ce qui précède, A x B x C = ( A x B ) x C. Là encore l'ordre des termes est important. Le produit A x A x A est appelé cube cartésien de A et il est noté A3 (lire " A au cube ") :
Les définitions précédentes se généralisent par récurrence :
Note : en peut définir des produits cartésiens infinis (voir ci-dessous), mais pour le faire, nous avons besoin de la notion de fonction.
Dans une réunion d'ensembles A∪B, l'origine des éléments y figurant est perdue. Un moyen d'éviter cette perte d'information est de réunir non pas directement les ensembles de départ, mais des copies de ces ensembles de la forme { α } × A et { β } × B , où " α " et " β " sont deux symboles quelconques distincts servant à identifier les ensembles A et B, par exemple " Ø " et " { Ø } ", ou " 0 " et " 1 ".
L' union disjointe, encore appelée somme disjointe ou somme cartésienne de deux ensembles A et B est ainsi définie par :
On peut remarquer que la somme disjointe de deux ensembles vérifie également la propriété fondamentale des couples. De plus, contrairement aux couples de Kuratowski, cette notion, qui n'utilise que des opérations ensemblistes élémentaires, peut s'appliquer aux classes propres. C'est pourquoi les sommes disjointes sont parfois appelées couples généralisés, et utilisées ainsi en théorie des classes.
La somme disjointe peut se généraliser à plus de deux ensembles. Par exemple, pour trois ensembles quelconques A, B et C:
On rappelle que l'entier de von Neumann 2 peut se définir comme {Ø, {Ø}}. Plus généralement, l'entier de von Neumann n étant défini, l'entier de von Neumann n+1 est défini par n+1 = n ∪ {n}.
On peut donc généraliser ce qui précède et définir ainsi la somme disjointe de n ensembles
D'autre part cette définition de la somme disjointe utilise les entiers de la théorie des ensembles, non ceux du méta-langage. On peut donc également généraliser cette notion à des ensembles quelconques (non nécessairement finis) d'index, par exemple des réunions disjointes dénombrables.
On peut généraliser la notion de produit cartésien à celle de produit d'une famille d'ensembles indexée par un ensemble quelconque, fini ou infini.
Bien que plus générale, cette notion peut difficilement être introduite en théorie des ensembles avant celle de produit cartésien binaire, du moins naturellement, car elle fait appel à la notion de fonction, qui utilise à son tour justement celle de couple, et donc de produit cartésien binaire.[1]
Une famille A d'ensembles indexée par un ensemble I est une fonction définie sur I. L'image de i par A est notée Ai. Il s'agit juste d'une notation (adaptée à un certain usage) pour une construction connue.
On peut maintenant définir le produit cartésien d'une famille d'ensembles { Ai } i∈I, que l'on note habituellement
Il s'agit de l'ensemble des fonctions f de I dans la réunion de la famille, telles que pour tout i dans I, f(i) appartienne à Ai :
Pour cela, on définit pour tout j dans I, la fonction appelée j-ème projection,
par :