Nombre ordinal - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs est disponible ici.

En linguistique, les mots premier, deuxième, troisième, quatrième, etc. s'appellent des adjectifs numéraux ordinaux. En mathématiques, cette notion est étendue pour " mesurer l'étendue " d'un ensemble bien ordonné quelconque, et ce, d'une manière plus fine que de considérer seulement sa cardinalité. Un ordinal peut être fini ou bien infini. Il a été inventé par Georg Cantor.

Introduction

Un entier naturel peut être utilisé dans deux buts : décrire la taille d'un ensemble, ou donner la position d'un élément dans une suite ordonnée. Dans le cas fini, ces notions correspondent respectivement aux adjectifs numéraux cardinaux (un, deux, trois,...) et ordinaux (premier, deuxième, troisième, ...) et sont très semblables. Cependant, dans le cas infini, on est amené à distinguer soigneusement nombre cardinal et nombre ordinal.

Si la notion de cardinal est associée à un ensemble sans structure particulière, les ordinaux sont intimement liés à un ordre sur les éléments de cet ensemble, et plus particulièrement un bon ordre. Brièvement, un ensemble bien ordonné est un ensemble dans lequel toute partie non vide admet un plus petit élément. Le plus petit élément de l'ensemble est noté 0, le suivant 1, le suivant 2, mais dès que l'ensemble est infini une notation adaptée est nécessaire pour désigner dans l'ordre tous les éléments de l'ensemble.

Considérons par exemple l'ensemble des entiers strictement positifs ordonné selon une variante de l'ordre de Sarkovski. Disposons d'abord les entiers impairs, puis les impairs multipliés par 2, puis par 4, etc.

1 \;\triangleleft\; 3 \;\triangleleft\; 5 \;\triangleleft\; 7 \;\triangleleft\; \ldots \;\triangleleft\; 2 \;\triangleleft\; 2\times 3 \;\triangleleft\; 2\times 5 \;\triangleleft\; 2\times 7 \;\triangleleft\; \ldots \;\triangleleft\; 2^n \;\triangleleft\; 2^n\times 3 \;\triangleleft\; 2^n\times 5 \;\triangleleft\; 2^n\times 7 \;\triangleleft\; \ldots
Représentation graphique d'une variante de l'ordre de Sarkovski.  Chaque barre correspond à un ordinal de la forme ω·m+n où m et n sont des entiers naturels.
Représentation graphique d'une variante de l'ordre de Sarkovski. Chaque barre correspond à un ordinal de la forme ω·m+nm et n sont des entiers naturels.

1, 3, 5, 7, etc. occupent respectivement les positions 0, 1, 2, 3, etc.

2 est le plus petit élément se trouvant après une infinité d'éléments. Du point de vue ordinal, il occupe une position notée ω.

2 × 3 est l'élément qui suit ω et occupe la place notée ω + 1, etc.

4 est le plus petit élément se trouvant après une double infinité d'éléments. Il occupe la place ω2. Plus généralement 2n occupe la place ωn. Si on disposait des éléments supplémentaires à la suite des éléments précédents, ils se trouveraient après une infinité d'infinis, donc occuperaient les positions ω22 + 1, et ainsi de suite.

Définition

On définit un nombre ordinal par l'une des deux manières qui suivent. La deuxième traduit le fait qu'un ordinal est défini par l'ensemble des ordinaux qui le précèdent :

  • La première définition est basée sur les classes d'équivalence d'ensembles ordonnés. Un ordinal est un ensemble bien ordonné, considéré à un isomorphisme d'ordre près (dans la catégorie des bons ordres où les morphismes sont les applications croissantes et les isomorphismes les bijections croissantes). Ainsi, si on change les noms des éléments d'un bon ordre, tant qu'on ne change pas la manière dont les éléments se comparent entre eux, on parle toujours du même ordinal.
  • La seconde définition est due à John von Neumann. Un ordinal α est un ensemble vérifiant les deux propriétés suivantes :
(i) Il est bien ordonné par la relation \in. Autrement dit, toute partie de l'ordinal admet un plus petit élément pour la relation d'appartenance.
(ii) Il est transitif, ce qui signifie que : \forall x ( x \in \alpha \Longrightarrow x \subset \alpha ).

C'est cette dernière définition que nous adopterons dans la suite de l'article. Usuellement, les ordinaux sont désignés par des lettres grecques, les ensembles en général par des lettres latines.

En appliquant la définition précédente, les entiers naturels peuvent être construits de la façon suivante :

0 = {} (ensemble vide)
n+1 = n U {n}

Un entier positif est ainsi identifié à l'ensemble de ses prédécesseurs sur N. Exemples :

1 = {0} = { {} }
2 = {0,1} = { {}, { {} } }
3 = {0,1,2} = {{}, { {} }, { {}, { {} } }}
4 = {0,1,2,3} = { {} , { {} }, { {}, { {} } } , {{}, { {} }, { {}, { {} } }} } etc.

De cette manière, tout entier naturel est un ensemble bien ordonné par la relation d'appartenance \in, et l'inclusion des ensembles se traduit par un ordre sur les entiers naturels.

L'existence des ordinaux infinis est assuré par l'axiome de l'infini. Le premier nombre ordinal transfini est noté ω. Il correspond à l'ensemble des nombres entiers naturels \mathbb{N}=\{0,1,2,3,\ldots\}.

L'ordinal qui suit est \omega \cup \{\omega\}, noté ω + 1.

Pour définir une notation adaptée aux ordinaux suivants, nous aurons besoin de définir des opérations arithmétiques sur les ordinaux.

Les ordinaux sont totalement ordonnés au sens large par l'inclusion ou au sens strict par l'appartenance, mais ne forment pas un ensemble au sens des axiomes ZFC (la théorie axiomatique des ensembles habituelle), mais une classe propre. Ceci peut-être mis en évidence grâce au paradoxe de Burali-Forti : l'ensemble des ordinaux serait par définition un ordinal ... mais qui serait strictement plus grand (aussi par définition) que tous les ordinaux. Ceci est évidemment contradictoire.

Propriétés

On montre que :

  • Si deux ordinaux α et β sont donnés, alors ou bien \alpha \in \beta, ce qu'on note également α < β, ou bien α = β, ou bien \beta \in \alpha. On a l'équivalence entre \alpha \subset \beta et (\alpha \in \beta ou α = β), ce qu'on note \alpha \le \beta.
  • Tous les éléments d'un ordinal sont des ordinaux.
  • L'intersection de deux ordinaux est un ordinal, égal au plus petit des deux ordinaux.
  • La réunion de deux ordinaux est un ordinal, égal au plus grand des deux ordinaux.
  • Si α est un ordinal, \alpha \cup \{\alpha\} aussi. Ce dernier ordinal est noté α + 1. Si α < β, alors \alpha +1\le \beta. Il n'existe donc aucun ordinal entre α et α + 1, qu'on peut donc qualifier d'ordinal successeur de α.
  • Si A est un ensemble dont les éléments sont des ordinaux, alors \cup(A) est un ordinal, borne supérieure de A pour la relation d'appartenance. (On note \cup(A) la réunion des ordinaux éléments de A).
  • Si α est un ordinal non vide, alors :
ou bien α possède un élément maximal β. Alors \cup(\alpha) = \beta \in \alpha, mais \beta + 1 \notin \alpha (puisque β est maximal), donc β + 1 = α.
ou bien α ne possède pas d'élément maximal. Alors \cup(\alpha) \notin \alpha et on montre alors que \cup(\alpha) = \alpha. Dans ce dernier cas, on dit que α est un ordinal limite. Un exemple d'un tel ordinal est donné par ω, plus petit ordinal infini.
  • On dit que l'ordinal α est fini si α n'est pas un ordinal limite et ne contient aucun ordinal limite ; autrement dit α est infini si il existe un ordinal limite \beta\leq\alpha.
  • Récurrence transfinie. Cette récurrence généralise le principe de récurrence qu'on applique sur les entiers à tous les ordinaux. Si \varphi est une propriété portant sur les ordinaux, telle que, pour tout ordinal α, l'implication suivante soit vraie :
(\forall \beta < \alpha, \varphi(\beta)) \Longrightarrow \varphi(\alpha)

alors \varphi(\alpha) est vraie pour tous les ordinaux. Dans le cas contraire, il suffirait de considérer le plus petit ordinal α tel que \varphi(\alpha) soit fausse pour obtenir une contradiction.

Opérations arithmétiques sur les ordinaux

On peut aussi définir des opérations arithmétiques sur les ordinaux. Ces opérations sont définies par récurrence transfinie.

Addition

Pour définir la somme de deux ordinaux α et β, on procède comme suit : en premier lieu on renomme les éléments de β de façon à ce qu'ils soient distincts de ceux de α, ensuite, les éléments de l'ordinal α dans l'ordre sont écrits à gauche des éléments de β, de sorte qu'on définit un ordre sur \alpha \cup \beta dans lequel tout élément de α est strictement plus petit que tout élément de β. Les ordinaux α et β conservent leur ordre initial. De cet façon, on définit un bon ordre sur \alpha \cup \beta, et cet ensemble bien ordonné est isomorphe à un unique ordinal qu'on appelle α + β.

Plus formellement, α + β est défini par récurrence transfinie de la façon suivante :

  • α + 0 = α
  • α + (β + 1) = (α + β) + 1
  • si β est un ordinal limite, alors \alpha + \beta = \cup_{\gamma < \beta} (\alpha + \gamma), ordinal limite (ou borne supérieure) des α + γ pour γ < β.

Donnons quelques exemples.

ω est le premier ordinal infini, correspondant à l'ensemble des entiers naturels. Essayons de visualiser ω + ω. Deux copies de ω sont placées l'une à la suite de l'autre. Si nous notons {0<1<2<...} la première copie et {0'<1'<2',...} la deuxième copie, alors ω + ω ressemble à ceci :

0 < 1 < 2 < 3 < ... < 0' < 1' < 2' < ...

Cet ordinal est différent de ω car, dans ω, 0 est le seul élément à ne pas avoir de prédécesseur direct, alors que dans ω + ω, 0 et 0' n'ont pas de prédécesseurs directs.

Considérons maitenant 3 + ω et ω + 3

0 < 1 < 2 < 0' < 1' < 2' < ...
0 < 1 < 2 < ... < 0' < 1' < 2'

Après renommage, le premier est comparable à ω lui-même, mais pas le deuxième. On a donc 3 + ω = ω mais ω < ω + 3. On peut voir également, en utilisant la définition formelle, que ω + 3 est le successeur de ω + 2 alors que 3 + ω est un ordinal limite, à savoir l'ordinal limite réunion de 3 + 0,3 + 1,3 + 2,... qui n'est autre que ω lui-même.

Ainsi, l'addition n'est pas commutative, par contre, on peut montrer qu'elle est associative.

On a par exemple : (ω + 4) + ω = ω + (4 + ω) = ω + ω

On peut également montrer que :

\gamma+\alpha = \gamma+\beta \Longrightarrow \alpha = \beta

Il y a donc une simplification à gauche. Par contre, il n'y a pas de simplification à droite, puisque :

3 + ω = 0 + ω = ω et 3 \neq 0

De même, on a :

\alpha < \beta \Longrightarrow \gamma + \alpha < \gamma + \beta

mais la relation analogue avec γ à droite est fausse. On a seulement :

\alpha \le \beta \Longrightarrow \alpha+\gamma \le \beta+\gamma

Pour tout ordinal α inférieur ou égal à β, on montre qu'il existe un ordinal unique γ tel que α + γ = β. γ s'appelle la différence de β par α. Si α est strictement supérieur à β, on convient que cette différence est nulle.

Multiplication

Pour multiplier deux ordinaux α et β, on écrit dans l'ordre les éléments de β, et on remplace chacun d'eux par différentes copies de la liste ordonnée des éléments de α. On obtient un ensemble bien ordonné qui définit un unique ordinal, noté αβ.

Plus formellement, le produit est défini par récurrence transfinie :

  • α0 = 0
  • α(β + 1) = αβ + α
  • si β est un ordinal limite, \alpha\beta = \cup_{\gamma < \beta} (\alpha\gamma), ordinal limite (ou borne supérieure) des αγ pour γ < β.

Voici ω2 :

00 < 10 < 20 < 30 < ... < 01 < 11 < 21 < 31 < ...

Et on voit que ω2 = ω + ω.

Par contre, ressemble à ceci :

00 < 10 < 01 < 11 < 02 < 12 < 03 < 13 < ...

et après renommage, on reconnaît ω, de sorte que 2ω = ω. La multiplication des ordinaux n'est donc pas commutative, par contre, on peut montrer qu'elle est associative.

Les principales propriétés du produit sont :

α0 = 0α = 0
α1 = 1α = α
α < β et \gamma  width= 0 \Longrightarrow \gamma\alpha < \gamma\beta" />, mais si on change γ de côté, l'inégalité stricte peut être mise en défaut.
Par exemple, 1 < 2 mais 1ω = 2ω = ω. Par contre, on a :
\alpha \le \beta \Longrightarrow \alpha\gamma \le \beta\gamma
γα = γβ et \gamma  width= 0 \Longrightarrow \alpha = \beta" /> (simplification à gauche). L'exemple ci-dessus montre qu'il n'y a pas de simplification à droite.
\alpha\beta = 0 \Longrightarrow \alpha = 0 ou β = 0
α(β + γ) = αβ + αγ (distributivité à gauche). Par contre, il n'y a pas de distributivité à droite.
En effet, (ω + 1)2 = ω + 1 + ω + 1 = ω + ω + 1 = ω2 + 1 et non ω2 + 2
soit α un ordinal et β > 0. Alors il existe un unique ordinal γ et un unique ordinal δ < β tels que α = βγ + δ, qui est une sorte de division euclidienne.

Exponentiation

Passons maintenant à l'exponentiation des ordinaux.

Pour un exposant fini, on peut se ramener au produit. Par exemple, ω2 = ωω. Mais on peut visualiser cet ordinal comme l'ensemble des couples d'entiers, ordonné selon l'ordre lexicographique suivant, où l'ordre sur les entiers de droite a plus de poids que l'ordre sur les entiers de gauche  :

(0,0) < (1,0) < (2,0) < (3,0) < ... < (0,1) < (1,1) < (2,1) < (3,1) < ... < (0,2) < (1,2) < (2,2) < ...

et de même, pour un n fini, ωn peut-être vu comme l'ensemble des n-uplets d'entiers.

Si on tente d'étendre se procédé à ωω, on obtient :

(0,0,0,...) < (1,0,0,0,...) < (2,0,0,0,...) < ... <
(0,1,0,0,0,...) < (1,1,0,0,0,...) < (2,1,0,0,0,...) < ... <
(0,2,0,0,0,...) < (1,2,0,0,0,...) < (2,2,0,0,0,...)
< ... <
(0,0,1,0,0,0,...) < (1,0,1,0,0,0,...) < (2,0,1,0,0,0,...)
< ...

Chaque élément du tableau est une suite infinie d'entiers, mais si on prend des suites quelconques, l'ordre ainsi défini n'est pas un bon ordre. On obtient un tel bon ordre en se limitant aux suites d'entiers n'ayant qu'un nombre fini d'éléments non nuls.

Plus généralement, pour calculer αβ, on écrit une suite de copie de β. Dans chaque suite, on remplace chaque élément par un des éléments de α, avec la restriction que seul un nombre fini d'éléments soit non nul.

Plus formellement, αβ est défini par récurrence transfinie de la façon suivante :

  • α0 = 1
  • αβ + 1 = αβα
  • si β est un ordinal limite et α > 0, alors \alpha^\beta = \cup_{\gamma < \beta}(\alpha^\gamma). Si α = 0 et \beta \ge 1 alors αβ = 0.

On trouve que 1ω = 1, 2ω = ω, 2ω + 1 = ω2 = ω + ω.

Voici quelques propriétés de l'exponentiation :

1α = 1
si γ > 1 alors \alpha < \beta \iff \gamma^{\alpha}<\gamma^{\beta}
\alpha \le \beta \Longrightarrow \alpha^{\gamma} \le \beta^{\gamma}. On prendra garde que :
2 < 3 mais 2ω = 3ω = ω
α > 1 et \beta width=0 \Longrightarrow" /> il existe un unique ordinal δ tel que \alpha^{\delta} \le \beta <\alpha^{\delta+1}
αβαγ = αβ + γ
β)γ = αβγ
si β > 0 et α > 1, alors il existe une décomposition unique \beta = \alpha^{\beta_n}\gamma_n + \cdots + \alpha^{\beta_0}\gamma_0 avec, pour tout i, 0 < γi < α et les exposants βi strictement croissants, ce qui donne une sorte de décomposition de β en base α

Remarque : on prendra garde que l'exponentiation des ordinaux n'a que peu de rapport avec l'exponentiation des cardinaux. Par exemple 2ω = ω dans les ordinaux et est dénombrable, alors que, dans les cardinaux, 2^{\aleph_0} désigne le cardinal de \mathfrak P(\aleph_0), ensemble des parties de \aleph_0, et a la puissance du continu. L'ambiguïté est levée si on convient d'utiliser les lettres grecques en calcul ordinal et la lettre \aleph pour les cardinaux.

La suite des ordinaux transfinis commence comme suit :

\omega < \omega + 1< \omega + 2 < \dots < \omega+\omega = \omega 2 < \dots < \omega 3 < \dots < \omega\omega = \omega^2 < \dots < \omega^\omega < \omega^{\omega^\omega} < \dots

Il existe des nombres ordinaux transfinis qui ne peuvent pas être obtenus en effectuant un nombre fini d'opérations arithmétiques n'utilisant que les nombres ordinaux finis et ω. Le plus petit d'entre eux est appelé ε0 et vaut \omega^{\omega^{\omega^{\cdots}}}. C'est le plus petit ordinal solution de l'équation x = ωx. On peut ensuite définir \epsilon_0^{\epsilon_0}, \epsilon_0^{\epsilon_0^{\epsilon_0}}, etc. jusqu'à ε1 deuxième solution de x = ωx. On peut de même définir ε2, ε3, ..., εω, ..., \epsilon_{\epsilon_0}, ... Tous ces ordinaux, construits en utilisant les opérations successeur et limite d'ordinaux déjà construits, sont dénombrables. On désigne par Ω le plus petit ordinal non dénombrable. Il contient tous les ordinaux dénombrables. Toute suite définie dans Ω admet un majorant dans Ω.

Forme normale de Cantor

Pour manipuler les ordinaux, il est plus simple de recourir à une écriture unique. Pour les petits ordinaux, c'est possible : soit ε0 le plus petit ordinal tel que \omega^{\varepsilon_0}=\varepsilon_0. Tout α<ε0 peut être écrit de façon unique \alpha=\omega^{\beta_1} c_1 + \omega^{\beta_2}c_2 + \cdots + \omega^{\beta_k}c_kc_1, c_2, \ldots, c_k sont des entiers et \beta_1  width= \beta_2 > \ldots > \beta_k" /> sont des ordinaux (on autorise βk = 0).

Les βi sont bien sûr à exprimer également sous forme normale, ce qui donne des ordinaux du type \omega^{\omega^{\omega6+42}\cdot1729+\omega^9+88}+\omega^{\omega^\omega}+65537. L'ensemble des ordinaux définissables l'une ou l'autre de ces formes est donc ε0.

Les opérations sur les ordinaux deviennent simples :

  • l'addition ωβc + ωβ'c'=
    • ωβ'c si β<β'
    • irréductible si β>β'
    • ωβ(c+c') si β=β'
  • la multiplication reste ωβc.ωβ'c = ωβ+β'c.

On notera une variante de cette forme normale qui et écrit \alpha = \omega^{\beta_1}  + \omega^{\beta_2} + \cdots + \omega^{\beta_k} en forçant c_1, c_2, \ldots, c_k =1 avec cette fois-ci des répétitions possibles : \beta_1 \geq \beta_2 \geq \ldots \geq \beta_k.

Utilisation des ordinaux

En dehors d'utilisations spécifiques à la théorie des ensembles, les ordinaux se rencontrent dans les domaines suivants :

En arithmétique

Le théorème de Goodstein est un théorème d'arithmétique dont la démonstration repose sur la théorie des ordinaux. Ce théorème pose la question de savoir si une certaine suite à valeurs entières finit par prendre la valeur 0. On associe à cette suite d'entiers une suite d'ordinaux strictement décroissante. Compte tenu du bon ordre des ordinaux, une telle suite est effectivement finie.

En analyse

Les ordinaux ont été définis par Cantor à la suite de ses études sur la convergence des séries trigonométriques. Si une telle série \sum a_n \cos(nx) + b_n \sin(nx) est nulle sur \mathbb R, alors tous les coefficients an et bn sont nuls. Cantor va chercher à affaiblir les hypothèses en réduisant le domaine sur lequel la série s'annule. Il montre que le résultat reste vrai si la série est nulle sauf en un nombre fini de points. Puis il introduit la notion suivante. Si P est une partie d'un segment [a,b], il définit l'ensemble dérivé de P, noté P1 comme l'ensemble des points d'accumulation de P. Pour tout entier n, il définit Pn + 1 comme étant le dérivé de l'ensemble Pn. Il montre que, si la série trigonométrique est nulle sur [0,2π] en dehors d'un ensemble P pour lequel l'un des Pn est vide, alors les coefficients sont nuls.

Cherchant à prolonger ce résultat si les Pn sont tous non vides. Il définit alors P^{\omega} = \cup_{n \in \mathbb N}P^n, puis Pω + 1 comme étant le dérivé de Pω. D'une manière générale, on définit, pour tout ordinal α l'ensemble Pα + 1 comme étant l'ensemble dérivé de Pα, et si α est un ordinal limite, Pα comme étant \cap_{\beta < \alpha} P^{\beta}.

René Baire reprendra cette démarche pour la convergence simple des suites de fonctions continues vers une fonction discontinue. Il définit une partie réductible P comme une partie pour laquelle il existe un ordinal α tel que Pα soit vide. Baire montre ensuite que si f est une fonction telle que l'ensemble des points où elle est discontinue est un ensemble réductible, alors f est limite simple d'une suite de fonctions continues.

Dans le cas contraire, la suite des Pα se stabilise à l'ensemble PΩ, où Ω désigne le premier ordinal non dénombrable. On montre que PΩ est un ensemble parfait.

En topologie

Soit Γ un ordinal. Notons [0,Γ] l'ensemble des ordinaux inférieurs ou égaux à Γ. Cet ensemble peut être muni d'une structure topologique, en prenant comme prébase d'ouverts les parties \{x \;|\; x  width= \alpha\}" /> et \{x \;|\; x < \beta\} pour tout ordinal α et β inférieurs ou égaux à Γ. Ces topologies sont sources de nombreux exemples et contre-exemples.

Ainsi, si on prend Γ = ω, alors [0,ω[ est l'ensemble \N muni de sa topologie discrète usuelle. [0,ω] est un compactifié de \N.

Si on prend Γ = Ω premier ordinal non dénombrable, alors aucune suite strictement inférieure à Ω ne peut converger vers Ω, bien que Ω appartienne à l'adhérence de [0,Ω[. En particulier, Ω n'admet pas de base dénombrable de voisinages et c'est le seul point de [0,Ω] qui soit dans ce cas.

Dans tout espace [0,Γ], les points de la forme α + 1 sont isolés. [0,Γ] est un espace compact. [0,Γ] et [0,Γ[ sont des espaces topologiques normaux. [0,\Omega] \times [0,\omega] est normal mais pas complètement normal. [0,\Omega] \times [0,\omega] - \{(\Omega,\omega)\} est complètement régulier mais n'est pas normal. [0,Ω] est complètement normal, mais pas parfaitement normal. [0,\Omega] \times [0,\Omega] - \{(\Omega,\Omega)\} est faiblement normal mais pas normal.

Page générée en 3.982 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise