Épreuve de Bernoulli - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs est disponible ici.

En probabilité, une épreuve de Bernoulli de paramètre p (réel compris entre 0 et 1) est une expérience aléatoire (c'est-à-dire soumise au hasard) comportant deux issues :

  • le succès
  • l'échec

Le réel p représente la probabilité d'un succès. Le réel q = 1 - p représente la probabilité d'un échec.

La définition du " succès " et de " l'échec " est conventionnelle et est fonction des conditions de l'expérience.

Exemple 1
Le lancer d'une pièce équilibrée est une expérience de Bernoulli de paramètre 0,5. Si le " succès " est l'obtention de pile, " l'échec " sera l'obtention de face.
Exemple 2
On tire au hasard une boule dans une urne contenant 7 boules blanches et 3 boules noires. On considère comme un succès le fait de tirer une boule noire. Cette expérience est une expérience de Bernoulli de paramètre 0,3 car la probabilité de tirer une boule noire est de 3/10.

Sur l'univers {succès, échec}, on peut définir une variable aléatoire X prenant la valeur 1 en cas de succès et 0 en cas d'échec. Cette variable aléatoire suit une loi de Bernoulli. Elle a pour espérance p et pour variance pq.

Une succession de n épreuves de Bernoulli indépendantes permet la construction d'une variable aléatoire comptant le nombre de succès. Cette variable aléatoire a pour loi de probabilité la loi binomiale de paramètres (n, p).

Pour schématiser la succession de plusieurs expériences de Bernoulli indépendantes, on peut construire un arbre de probabilité comportant 2n rameaux finaux. Cet arbre s'appelle un schéma de Bernoulli.

Page générée en 0.076 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise