La théorie des modèles est une théorie de la vérité mathématique. Elle consiste essentiellement à dire qu’une théorie est mathématiquement valide si on peut définir un univers dans lequel elle est vraie.
Elle a été formulée d’une façon complète et cohérente d’abord par Alfred Tarski, qui l'appelait aussi la sémantique du calcul des prédicats, pour deux raisons.
Mais ses racines sont beaucoup plus lointaines. Un premier modèle délibérément créé apparaît avec la naissance des géométries non euclidiennes. D'abord purement déductives, ces géométries ont peu à peu été acceptées à partir du moment où l'on a pu en donner des modèles, c'est-à-dire des supports géométriques avec des interprétations spécifiques pour désigner les droites. Poincaré par exemple donne un modèle du plan hyperbolique à partir d'un demi-plan du plan complexe.
Symétriquement, si l'on peut dire, l'abbé Buée et Jean-Robert Argand (plan d'Argand), puis ensuite Gauss et Cauchy donnent un modèle géométrique des nombres complexes.
Un modèle sert d'abord de structure pour valider une théorie logique ou mathématique.
On dira qu'une théorie est non contradictoire s'il existe un modèle dans lequel elle est vraie. On dira qu'elle est consistante (ou cohérente) si elle ne permet pas de prouver à la fois une formule et sa négation. Il n'est pas toujours facile ou possible de montrer qu'une théorie est consistante. Il est parfois plus facile de montrer qu'elle est non contradictoire, puisqu'il suffit pour cela de mettre en évidence un modèle. Le Théorème de complétude de Gödel peut être considéré comme le théorème fondamental de la théorie des modèles. Il établit une équivalence entre les deux notions de non-contradiction et de consistance, et permet de montrer qu'une formule est vraie dans tout modèle si et seulement si elle est prouvable dans un système de déduction adéquat. Il clôt des recherches qui remontent au théorème de Löwenheim (1915) et qui s’inspirent d’une approche hilbertienne de la vérité mathématique. Un modèle donne donc la certitude de travailler sur une théorie qui ne débouchera pas sur une contradiction.
En calcul propositionnel de la logique classique, il n'y a pas de quantificateurs existentiels ou universels. Les formules sont constituées de propositions atomiques reliées itérativement par des connecteurs logiques. Un modèle consiste à définir, pour chaque variable propositionnelle atomique, une valeur de vérité (vraie ou fausse). On peut alors en déduire la vérité ou la fausseté de toute formule complexe.
La complexité d'une formule est mesurée par le nombre maximal d’opérateurs emboîtés. Par exemple dans
Les formules de complexité 0 sont les formules atomiques. C'est le modèle choisi qui définit leur valeur de vérité.
Supposons que la vérité et la fausseté de toutes les formules de complexité n ait été définie. Montrons comment définir la vérité et la fausseté des formules de complexité n + 1. Soit P une formule de complexité n + 1, obtenue à partir de la formule ou des formules Q et R de complexité n ou inférieure, au moyen d'un connecteur logique. La vérité ou la fausseté de Q et R est donc déjà définie.
a)
b)
c)
d)
Une formule vraie dans tout modèle s'appelle une tautologie. Si la formule possède n variables propositionnelles atomiques, il suffit en fait de vérifier la vérité de la formule dans les 2n modèles possibles donnant les diverses valeurs de vérité aux n propositions atomiques. Le nombre de modèles étant fini, il en résulte que le calcul des propositions est décidable : il existe un algorithme permettant de décider si une formule est une tautologie ou non.
Par ailleurs, le théorème de complétude du calcul des propositions établit l'équivalence entre être une tautologie et être prouvable dans un système de déduction adéquat.
Montrons que
Étant vrai dans tout modèle,
Par contre,
Dans le calcul des prédicats du premier ordre de la logique classique, les prédicats utilisés s'appliquent sur des variables. Pour définir un modèle, il convient donc d'introduire un ensemble dont les éléments serviront de valeurs à attribuer aux variables. Comme pour le calcul propositionnel, on commence par définir la vérité ou la fausseté des formules atomiques dans un domaine donné, avant de définir de proche en proche la vérité ou la fausseté des formules composées. On peut ainsi définir par étapes successives la vérité de toutes les formules complexes de la logique du premier ordre composées à partir des symboles fondamentaux d’une théorie.
Une formule est atomique lorsqu’elle ne contient pas d’opérateurs logiques (négation, conjonction, existentiation, ...). Atomique ne veut pas dire ici qu’une formule ne contient qu’un seul symbole mais seulement qu’elle contient un seul symbole de prédicat fondamental. Les autres noms qu’elle contient sont des noms d’objet et ils peuvent être très complexes. Qu’une formule est atomique veut dire qu’elle ne contient pas de sous-formule. Il s’agit d’une atomicité logique.
Une interprétation d'un langage du premier ordre est définie par les éléments suivants.
L’ensemble U, ou l’interprétation dont il fait partie, est un modèle d’une théorie lorsque tous les axiomes de cette théorie sont vrais relativement à cette interprétation.
L'usage du mot, modèle, est parfois multiple. Tantôt il désigne l'ensemble U, tantôt l'ensemble des formules atomiques vraies, tantôt l'interprétation. Souvent, quand on dit un modèle d'une théorie, on suppose automatiquement qu'elle y est vraie. Mais on dit aussi qu'une théorie est fausse dans un modèle.
Dès qu’on a une interprétation d’une théorie, la vérité de toutes les formules qui mentionnent seulement les constantes, les prédicats et les opérateurs fondamentaux, peut être définie. On commence par les formules atomiques et on procède récursivement aux formules plus complexes.
On reprend les règles définies dans le paragraphe relatif aux modèles du calcul propositionnel, et on définit les deux règles supplémentaires, relatives au quantificateur universel et existentiel.
e)
f)
e) et f) permettent de définir la vérité et la fausseté de toutes les formules closes, c’est-à-dire sans variables libres.
La vérité et la fausseté de toutes les formules complexes, sans variables libres, de la logique du premier ordre, peut donc être déterminée dans un modèle donné.
Une formule vraie dans tout modèle s'appelle loi logique ou théorème. Comme pour le calcul propositionnel, le théorème de complétude de Gödel énonce l'équivalence entre loi logique et formule prouvable dans un système de déduction adéquat. Ce résultat est remarquable, compte tenu du fait que, contrairement au calcul des propositions, le nombre de modèles pouvant être envisagé est en général infini. D'ailleurs, contrairement au calcul des propositions, le calcul des prédicats n'est pas décidable.
La formule
Dans les deux cas, la formule est vraie. U étant quelconque, la formule est vraie dans tout modèle, et peut également être prouvée au moyen d'un système de déduction.
Par contre, la formule
Les modèles présentés jusqu'ici sont des modèles de la logique classique. Mais il existe d'autres logiques, par exemple la logique intuitionniste qui est une logique qui construit les démonstrations à partir des prémisses. Il existe pour cette logique une théorie des modèles, les modèles de Kripke avec un théorème de complétude : une formule est prouvable en logique intuitionniste si et seulement si elle est vraie dans tout modèle de Kripke.
Ces modèles permettent par exemple de répondre aux questions suivantes. Soit F une formule close :
C'est ainsi qu'on peut prouver que :
Les modèles de Kripke servent aussi à donner des modèles pour les logiques modales.
Nous avons déjà donné des applications des modèles :
En ce qui concerne les systèmes d'axiomes, les modèles interviennent également pour montrer l'indépendance des axiomes entre eux, ou établir la consistance d'un système axiomatique en s'appuyant sur la consistance d'un autre système. Donnons quelques exemples.
En géométrie, le Vème postulat d'Euclide est indépendant des autres axiomes de la géométrie. En effet, d'une part, le plan de la géométrie euclidienne est un modèle dans lequel ce postulat est vrai. D'autre part, le demi-plan de Poincaré est un modèle de la géométrie hyperbolique dans lequel ce postulat est faux. Dans ce modèle, l'univers (le plan hyperbolique) est constitué des points du demi-plan euclidien ouvert supérieur
Dans cet univers, si on se donne une droite et un point extérieur à cette droite, il existe une infinité de droites passant par le point et non sécantes à la première droite.
Dans cet exemple, on voit qu'on peut définir les objets d'un nouveau modèle (droites du plan hyperbolique) en se servant d'autres objets d'un autre modèle (demi-droites et demi-cercles du demi-plan euclidien). Si on suppose la consistance du modèle euclidien, alors on a établi la consistance du modèle hyperbolique.
Cette utilisation de modèle pour montrer la consistance relative d'un autre modèle est très fréquente. Considérons par exemple la théorie axiomatique des ensembles, notée ZF. Considérons par ailleurs ZF auquel on ajoute l'axiome du choix, notée ZFC. On peut montrer que si ZF est consistante, alors ZFC aussi. On est en effet capable de définir une fonction F définie sur les ordinaux qui à tout ordinal α associe un ensemble Fα, et la classe
On a alors défini dans L une fonction f vérifiant
Toujours dans la théorie des ensembles, si on pose