Commençons par donner une définition simple d'une probabilité. Considérons une expérience aléatoire
Une probabilité
Premier axiome
Pour tout évènement
C'est-à-dire que la probabilité d'un évènement est représentée par un nombre réel compris entre 0 et 1.
Deuxième axiome
C'est-à-dire que la probabilité de l'évènement certain, ou d'obtenir un quelconque résultat de l'univers, est égale à 1. Autrement dit, la probabilité de réaliser l'un ou l'autre des évènements élémentaires est égale à 1.
Troisième axiome
Toute suite d'évènements deux à deux disjoints (on dit aussi : deux à deux incompatibles),
C'est-à-dire que la probabilité d'un évènement qui est la réunion (dénombrable) disjointe d'évènements est égale à la somme des probabilités de ces évènements. Ceci s'appelle la σ-additivité, ou additivité dénombrable (si les évènements ne sont pas deux à deux disjoints, cette relation n'est plus vraie en général).
Ces trois axiomes sont connus comme étant les axiomes de Kolmogorov, du nom d'Andrei Nikolaievitch Kolmogorov, mathématicien russe qui les a développés.
D'une manière plus théorique, une probabilité peut être définie comme une mesure sur une σ-algèbre ou tribu
Cette propriété est importante, puisqu'elle nous amène naturellement au concept de probabilité conditionnelle. Tout évènement
pour tout évènement
Le réel
À partir des axiomes, se démontrent un certain nombre de propriétés utiles pour le calcul des probabilités, par exemple :