La statistique (par opposition à une statistique) est l'ensemble des instruments et de recherches mathématiques permettant de déterminer les caractéristiques d'un ensemble de données (généralement vaste). Les statistiques (au pluriel) sont le produit des analyses reposant sur l'usage de la statistique. Cette activité regroupe trois principales branches :
Cette distinction ne consiste pas à définir plusieurs domaines étanches. En effet, le traitement et l'interprétation des données ne peuvent se faire que lorsque celles-ci ont été récoltées. Réciproquement, la statistique mathématique précise les règles et les méthodes sur la collecte des données, pour que celles-ci puissent être correctement interprétées.
John Tukey disait qu'il y a deux approches en statistiques, entre lesquelles on jongle constamment : les statistiques exploratoires et les statistiques confirmatoires (exploratory and confirmatory statistics) :
Bien que le nom de statistique soit relativement récent — on attribue en général l'origine du nom au XVIIIe siècle de l'allemand Staatskunde — cette activité semble exister dès la naissance des premières structures sociales. D'ailleurs, les premiers textes écrits retrouvés étaient des recensements du bétail, des informations sur son cours, et des contrats divers. On a ainsi trace de recensements en Chine au XXIIIe siècle av. J.-C. ou en Égypte au XVIIIe siècle av. J.-C.. Ce système de recueil de données se poursuit jusqu'au XVIIe siècle. En Europe, le rôle de collecteur est souvent tenu par des guildes marchandes puis par les intendants de l'État.
Ce n'est qu'au XVIIIe siècle que l'on vit apparaître le rôle prévisionnel des statistiques avec la construction des premières tables de mortalité.
La statistique mathématique s'appuya sur les premiers travaux concernant les probabilités développés par Fermat et Pascal. C'est probablement chez Thomas Bayes que l'on vit apparaître un embryon de statistique inférentielle. Condorcet et Laplace parlaient encore de probabilité là où l'on parlerait aujourd'hui de fréquence. Mais c'est à Adolphe Quételet que l'on doit l'idée que la statistique est une science s'appuyant sur les probabilités.
Le XIXe siècle vit cette activité prendre son plein essor. Des règles précises sur la collecte et l'interprétation des données sont édictées. La première application industrielle des statistiques eut lieu avec le recensement américain de 1890, qui mit en œuvre la carte perforée inventée par le statisticien Herman Hollerith. Celui-ci avait déposé un brevet au bureau américain des brevets.
Au XXe siècle, ces applications industrielles se développèrent d'abord aux États-Unis, qui étaient en avance sur les sciences de gestion, puis seulement après la Première Guerre mondiale en Europe. Le régime nazi employa des méthodes statistiques à partir de 1934 pour le réarmement. En France, on était moins au fait de ces applications.
L'application industrielle des statistiques en France se développa avec la création de l'INSEE, qui remplaça le Service National des Statistiques créé par René Carmille.
L'avènement de l'informatique dans les années 1940 (aux États-Unis) puis en Europe (dans les années 1960) permit de traiter un plus grand nombre de données, mais surtout de croiser entre elles des séries de données de types différents. C'est le développement de ce qu'on appelle l'analyse multidimensionnelle. Au cours de ce même siècle, plusieurs courants de pensée vont s'affronter :
Les statistiques sont utilisées dans des domaines très variés comme :
Le but de la statistique est d'extraire des informations pertinentes d'une liste de nombres difficile à interpréter par une simple lecture. Deux grandes familles de méthodes sont utilisées selon les circonstances. Rien n'interdit de les utiliser en parallèle dans un problème concret mais il ne faut pas oublier qu'elles résolvent des problèmes de natures totalement distinctes. Selon une terminologie classique, ce sont la statistique descriptive et la statistique mathématique. Aujourd'hui, il semble que des expressions comme analyse des données et statistique inférentielle soient préférées, ce qui est justifié par le progrès des méthodes utilisées dans le premier cas.
Considérons par exemple les notes globales à un examen. Il peut être intéressant d'en tirer une valeur centrale qui donne une idée synthétique sur le niveau des étudiants. Celle-ci peut être complétée par une valeur de dispersion qui mesure, d'une certaine manière, l'homogénéité du groupe. Si on veut une information plus précise sur ce dernier point, on pourra construire un histogramme ou, d'un point de vue légèrement différent, considérer les déciles. Ces notions peuvent être intéressantes pour faire des comparaisons avec les examens analogues passés les années précédentes ou en d'autres lieux. Ce sont les problèmes les plus élémentaires de l'analyse des données qui concernent une population finie. Les problèmes portant sur des statistiques multidimensionnelles nécessitent l'utilisation de l'algèbre linéaire. Indépendamment du caractère, élémentaire ou non, du problème il s'agit de réductions statistiques de données connues dans lesquelles l'introduction des probabilités améliorerait difficilement l'information obtenue. Il est raisonnable de regrouper ces différentes notions :
Un changement radical se produit lorsque les données ne sont plus considérées comme une information complète à décrypter selon les règles de l'algèbre mais comme une information partielle sur une population plus importante, généralement considérée comme une population infinie. Pour induire des informations sur la population inconnue il faut introduire la notion de loi de probabilité. Les données connues constituent dans ce cas une réalisation d'un échantillon, ensemble de variables aléatoires supposées indépendantes (voir Loi de probabilité à plusieurs variables). La théorie des probabilités permet alors, entre autres opérations,
Le statisticien utilise des statistiques théoriques et appliquées dans le secteur privé et le secteur public. Le cœur du travail est de mesurer, interpréter et décrire le monde en combinant généralement l'interprétation statistique avec des fortes connaissances sur le domaine d'étude.
Les domaines d'applications sont très variés: la production, la recherche, les finances, la médecine, l'assurance et les statistiques descriptives au sujet de la société. Les statisticiens sont souvent employés en tant qu'aide à la décision. Ils effectuent des recherches sur des concepts, des théories, des procédés et des méthodes statistiques, sous leurs aspects mathématiques et autres, les améliorent, et donnent des avis sur leurs applications dans des domaines tels que le commerce, la médecine, les sciences sociales et autres, ou les appliquent eux-mêmes.
Leurs tâches consistent:
Parmi les professions qui entrent dans ce groupe de base figurent les suivantes: Démographe, Statisticien, Statisticien mathématicien,Statisticien en statistiques appliquées
Parmi les professions apparentées, classées ailleurs, figurent les suivantes: Assistant statisticien, Employé, service statistique
Voir article détaillé : Liste de statisticiens
L'enquête statistique est toujours précédée d'une phase où sont déterminés les différents caractères à étudier.
L'étape suivante consiste à choisir la population à étudier. Il se pose alors le problème de l'échantillonnage : choix de la population à sonder (au sens large : cela peut être un sondage d'opinion en interrogeant des humains, ou bien le ramassage de roches pour déterminer la nature d'un sol en géologie), la taille de la population et sa représentativité.
Que ce soit pour un recueil total (recensement) ou partiel (sondage), des protocoles sont à mettre en place pour éviter les erreurs de mesures qu'elles soitent accidentelles ou répétitives (biais).
Le pré traitement des données est extrêmement important, en effet, une transformation des données initiales (un passage au log, par exemple), peuvent considérablement faciliter les traitements statistiques suivants.
Le résultat de l'enquête statistique est une série de chiffres (tailles, salaires) ou de données qualitatives (langues parlées, marques préférées). Pour pouvoir les exploiter, il va être nécessaire d'en faire un classement et un résumé visuel ou numérique. Il sera parfois nécessaire d'opérer une compression de données. C'est le travail de la statistique descriptive. Il sera différent selon que l'étude porte sur une seule variable ou sur plusieurs variables.
Le regroupement des données, le calcul des effectifs, la construction de graphiques permet un premier résumé visuel du caractère statistique étudié. Dans le cas d'un caractère quantitatif continu, l'histogramme en est la représentation graphique la plus courante.
Les valeurs numériques d'un caractère statistique se répartissent dans
On peut aussi chercher à comparer deux populations. On s'interessera alors plus particulièrement à leurs critères de position, de dispersion, à leur boîte à moustaches ou à l'analyse de la variance.
Les moyens informatiques permettent aujourd'hui d'étudier plusieurs variables simultanément. Le cas de deux variables va donner lieu à la création d'un nuage de points, d'une étude de corrélation (mathématiques) éventuelle entre les deux phénomènes ou étude d'une régression linéaire .
Mais on peut rencontrer des études sur plus de deux variables : c'est l'analyse multidimensionnelle dans laquelle on va trouver l'analyse en composantes principales, l'analyse en composantes indépendantes, la régression linéaire multiple et le data mining. Aujourd'hui, le data mining (appelé aussi Knowledge Discovery) s'appuie sur la statistique pour découvrir des relations entre les variables de très vastes bases de données. Les avancées technologiques (augmentation de la fréquence des capteurs disponibles, des moyens de stockage, et de la puissance de calcul) donnent au data mining un vrai intérêt.
L'inférence statistique a pour but de faire émerger des propriétés d'un ensemble de variables connues uniquement à travers quelques une de ses réalisations (qui constituent un échantillon de données).
Elle s'appuie sur les résultats de la statistique mathématique, qui applique des calculs mathématiques rigoureux concernant la théorie des probabilités et la théorie de l'information aux situations où on n'observe que quelques réalisations (expérimentations) du phénomène à étudier.
Sans la statistique mathématique, un calcul sur des données (par exemple une moyenne), n'est qu'un indicateur. C'est la statistique mathématique qui lui donne le statut d'estimateur dont on maîtrise le biais, l'incertitude et autres caractéristiques statistiques. On cherche en général à ce que l'estimateur soit sans biais, convergeant et efficace.
On peut aussi émettre des hypothèses sur la loi générant le phénomène général, par exemple "la taille des enfants de 10 ans en France suit-elle une loi gaussienne ?". L'étude de l'échantillon va alors valider ou non cette hypothèse : c'est ce qu'on appelle les tests d'hypothèses. Les tests d'hypothèses permettent de quantifier la probabilité avec laquelle des variables (connues seulement à partir d'un échantillon) vérifient une propriété donnée.
Enfin, on peut chercher à modéliser un phénomène a posteriori. La modélisation statistique doit être différenciée de la modélisation physique. Dans le second cas des physiciens (c'est aussi vrai pour des chimistes, biologistes, ou tout autre scientifique), cherchent à construire un modèle explicatif d'un phénomène, qui est soutenu par une théorie plus générale décrivant comment les phénomènes ont lieu en exploitant le principe de causalité. Dans le cas de la modélisation statistique, le modèle va être construit à partir des données disponibles, sans aucun a priori sur les mécanismes entrant en jeux. Ce type de modélisation s'appelle ausssi modélisation empirique. Bien entendu, compléter une modélisation statistique par des équations physiques (souvent intégrées dans les pré traitements des données) est toujours positif.
Un modèle est avant tout un moyen de relier des variables à expliquer Y à des variables explicatives X, par une relation fonctionnelle :
Les modéles statistiques peuvent être regroupés en grandes familles (suivant la forme de la fonction F):
Les modèles bayésiens (du nom de Bayes) peuvent être utilisés dans les trois catégories.
Cette branche des mathématiques, très liée aux probabilités, est indispensable pour valider les hypothèses ou les modèles élaborés dans la statistique inférentielle. La théorie mathématiques des probabilités formalise les phénomènes aléatoires. Les statistiques mathématiques se consacrent à l'étude de phénomènes aléatoires que l'on connaît via certaines de ses réalisations.
Par exemple, pour une partie de dés à six faces :
Une fois la règle établie, elle peut être utilisée en statistique inférentielle