l'Algorithme espérance-maximisation (en anglais "Expectation-maximisation algorithm", souvent abrégé "EM"), proposé par Dempster et al. (1977), est une classe d'algorithmes qui permettent de trouver le maximum de vraisemblance des paramètres de modèles probabilistes lorsque le modèle dépend de variables latentes non observables.
On utilise souvent Espérance-maximisation pour la classification de données, en apprentissage machine, ou en vision artificielle. Espérance-maximisation alterne des étapes d'évaluation de l'espérance (E), où l'on calcule l'espérance de la vraisemblance en tenant compte des dernières variables observées, et une étape de maximisation (M), où l'on estime le maximum de vraisemblance des paramètres en maximisant la vraisemblance trouvée à l'étape E. On utilise ensuite les paramètres trouvés en M comme point de départ d'une nouvelle phase d'évaluation de l'espérance, et l'on itère ainsi.
Pour résoudre le problème d'apprentissage des modèles de Markov cachés (HMM), c’est-à-dire la détermination des paramètres du modèle markovien, on utilise l'algorithme de Baum-Welch.
En considérant un échantillon
Cet algorithme est particulièrement utile lorsque la maximisation de L est très complexe mais que, sous réserve de connaître certaines données judicieusement choisies, on peut très simplement déterminer
Dans ce cas, on s'appuie sur des données complétées par un vecteur
et donc,
L'algorithme EM est une procédure itérative basée sur l'espérance des données complétées conditionnellement au paramètre courant. En notant
ou encore
avec
On montre que la suite définie par
fait tendre
On peut donc définir l'algorithme EM de la manière suivante:
En pratique, pour s'affranchir du caractère local du maximum atteint, on fait tourner l'algorithme EM un grand nombre de fois à partir de valeurs initiales différentes de manière à avoir de plus grandes chances d'atteindre le maximum global de vraisemblance.
Une des applications phares d'EM est l'estimation des paramètres d'une densité mélange en classification automatique dans le cadre des modèles de mélanges gaussiens. Dans ce problème, on considère qu'un échantillon
et donc, la log-vraisemblance du paramètre Φ est donnée par
La maximisation de cette fonction selon Φ est très complexe. Par exemple, si on souhaite déterminer les paramètres correspondant à 2 groupes suivant une loi normale dans un espace de dimension 3 (ce qui est peu), on doit optimiser une fonction non linéaire de
Parallèlement, si on connaissait les groupes auxquels appartient chacun des individus, alors le problème serait un problème d'estimation tout à fait simple et très classique.
La force de l'algorithme EM est justement de s'appuyer sur ces données pour réaliser l'estimation. En notant zik la grandeur qui vaut 1 si l'individu xi appartient au groupe Gk et 0 sinon, la log-vraisemblance des données complétée s'écrit
On obtient alors rapidement
En notant tik la quantité donnée par
L'avantage de cette méthode est qu'on peut séparer le problème en g problèmes élémentaires qui sont, en général relativement simple. Dans tous les cas, les proportions optimales sont données par
L'estimation des θ dépend par ailleurs de la fonction de probabilité f choisie. Dans le cas normal, il s'agit des moyennes μk et des matrices de variance-covariance Σk. Les estimateurs optimaux sont alors donnée par
Avec M' la matrice transposée de M
L'algorithme EM, bien que très performant et souvent simple à mettre en œuvre, pose quand même parfois quelques problèmes qui ont donné lieu à des développements complémentaires. Parmi ceux-ci, nous évoquerons un développement appelé GEM (Generalized EM) qui permet de simplifier le problème de l'étape maximisation, un autre, appelé CEM (Classification EM) permettant de prendre en compte l'aspect classification lors de l'estimation, et un dernier, SEM (Stocastic EM) dont l'objectif est de réduire le risque de tomber dans un optimum local de vaisemblance.
GEM a été proposé en même temps qu'EM par Dempster et al. (1977) qui ont prouvé que pour assurer la convergence vers un maximum local de vraisemblance, il n'est pas nécessaire de maximiser Q à chaque étape mais qu'une simple amélioration de Q est suffisante.
GEM peut donc s'écrire de la manière suivante:
L'algorithme EM se positionne dans une optique estimation, c'est-à-dire qu'on cherche à maximiser la vraisemblance du paramètre
L'approche classification, proposée par Celeux et Govaert (1991) consiste à optimiser, non pas la vraisemblance du paramètre, mais directement la vraisemblance complétée, donnée, dans le cas des modèles de mélange, par
Pour cela, il suffit de procéder de la manière suivante:
Afin de réduire le risque de tomber dans un maximum local de vraisemblance, Celeux et Diebolt (1985) proposent d’intercaler une étape stochastique de classification entre les étapes E et M. Après le calcul des probabilités
Contrairement à ce qui se produit dans l’algorithme CEM, on ne peut considérer que l’algorithme a convergé lorsque les individus ne changent plus de classes. En effet, celles-ci étant tirées aléatoirement, la suite