En mécanique des fluides, un fluide est dit parfait s'il est possible de décrire son mouvement sans prendre en compte les effets de viscosité, ainsi que de conductivité thermique. Avec en sus l'hypothèse, de validité très générale, de conservation de la masse[1], le fluide est donc isentropique.
Mathématiquement cela revient à annuler les termes correspondants dans l'équation de Navier-Stokes, on obtient ainsi l'équation d'Euler des fluides.
Ce sont le produit des coefficients de viscosité et de conductivité thermique (et pas seulement ces coefficients) avec respectivement les cisaillements de vitesse et les gradients thermiques, qui doivent être négligeables.
Tous les fluides ayant une viscosité (sauf un superfluide, ce qui en pratique ne concerne guère que l'hélium à très basses température et l'intérieur d'une étoile à neutrons), le fluide parfait ne peut être qu'une approximation quand on fait tendre cette viscosité vers zéro. Cela revient à faire tendre le nombre de Reynolds vers l'infini. Ce type de situation est cependant très courant, par exemple en aérodynamique (où en rencontre des nombres de Reynolds très grands). Dans ces conditions, les zones de cisaillement important(où la viscosité et la turbulence sont influentes) sont concentrés dans restreintes (couches limites), et la description globale de l'écoulement par un fluide parfait peut être adéquate.
En cosmologie, les différentes formes de matière qui emplissent l'univers peuvent être considérées, du moins aux échelles où l'univers est homogène comme des fluides parfaits. Comme un fluide parfait est isentropique, l'expansion de l'univers est parfois décrite comme étant adiabatique, s'identifiant sous certains aspects à la détente d'un gaz sans échange de chaleur avec l'extérieur.
Un fluide parfait obéit à l'équation de conservation de la masse, à l'équation d'Euler sans viscosité, ces deux équations formant les équations de base des fluides non dissipatifs, ainsi qu'à une version du premier principe de la thermodynamique, ce deux aspects (mécanique des fluides et thermodynamique) étant intimement liés.
Les deux premières équations s'écrivent, en notant ρ la masse volumique du fluide, P sa pression et v sa vitesse :
où
D'ordinaire, la densité d'énergie interne d'un système physique (dans le présent contexte, une petite région contenant un fluide donné) dépend de la densité de celui-ci et de son entropie. En effet, le premier principe de la thermodynamique stipule que l'énergie interne U d'un système varie selon
où P représente sa pression, V le volume, T la température et S l'entropie. Dans le cas d'un fluide parfait, on a par définition dS = 0, d'où
ce qui équivaut à dire que l'élément de fluide possède une relation univoque entre sa densité d'énergie et sa pression, ne dépendant pas d'un paramètre extérieur. Si l'on passe à la densité d'énergie interne définie par
on obtient alors
d'où
Un fluide parfait peut être décrit à l'aide d'un tenseur énergie impulsion T. À partir duquel on peut retrouver les équations (conservation de la masse et Euler, plus premier principe de la thermodynamique) auxquelles obéit le fluide parfait. Celui-ci s'écrit
ou, en terme de composantes,
où ρ représente la densité d'énergie du fluide, somme de sa densité d'énergie interne ε et de sa densité d'énergie de masse μc2, μ étant la masse volumique de l'élément de fluide et c la vitesse de la lumière, u la quadrivitesse du fluide (c'est-à-dire la vitesse d'ensemble de cet élément), et g le tenseur métrique. La relativité restreinte et la relativité générale stipulent que le tenseur énergie impulsion d'un fluide est " conservé ", c'est-à-dire que sa divergence est nulle. Cette équation s'écrit, en terme de composantes,
D représentant la dérivée ordinaire (en relativité restreinte) ou la dérivée covariante (en relativité générale). Le calcul donne alors
C'est cette équation qui permet de retrouver les trois équations précitées.
La quantité uαDαX mesure la variation d'une quantité X le long de la trajectoire de l'élément de fluide. Elle correspond donc à la variation de cette quantité transportée par l'élément de fluide. On la note communément d / dτ, τ étant le temps propre associé à l'élément de fluide. On obtient ainsi
En effectuant le produit scalaire de cette équation avec la quadritesse, il vient alors, en notant par un point la dérivée par rapport à τ,
La quadrivitesse ayant une norme constante, uβuβ = c2, une quantité du type
Le terme Dαuα, habituellement noté θ est appelé expansion de l'élément de fluide. Dans la limite non relativiste, il correspond à la divergence du vecteur vitesse, ce qui correspond au taux de variation de son volume. Ainsi, on a
ce qui permet de réécrire l'équation en
Enfin, l'hypothèse de conservation du nombre de particules s'écrit
où n représente la densité de particules. Elle est reliée à sa densité d'énergie de masse par la formule
m étant la masse des particules. Cette équation s'interprète par le fait que le nombre de particules de l'élément de fluide étant contant, la variation de la densité de celles-ci le long de l'écoulement est uniquement due à la variation du volume de l'élément En pratique, si l'on repasse en terme de coordonnées, la densité de particules est une fonction des coordonnées d'espace et de temps,
Ainsi, on obtient
que l'on peut regrouper en
Ainsi, l'équation initiale laisse uniquement
soit comme annoncé
À un niveau microscopique, le tenseur énergie impulsion d'un fluide peut toujours être déterminé par un processus rigoureux, en partant d'une quantité appelée lagrangien. Par exemple, le tenseur énergie impulsion d'une particule ponctuelle se déduit immédiatement du lagrangien la décrivant. En mécanique des fluides, on considère que la distribution des particules composant le fluide peut, au-delà d'une certaine échelle, être considérée comme un milieu continu.
Par contre, à un niveau macroscopique, rien ne permet d'affirmer avec certitude que le tenseur énergie impulsion puisse être dérivé d'un lagrangien macroscopique. D'ordinaire, le tenseur énergie impulsion d'un fluide est déterminé dans un premier temps par l'écriture du tenseur énergie impulsion d'une particule, puis en supposant une certaine distribution de particules dans une région de l'espace (une fonction de distribution), puis en effectuant la moyenne des tenseurs énergie impulsion individuels sur un volume petit devant les dimensions du problème, mais grand devant la séparation inter particules. Rien ne permet d'affirmer qu'il est possible de trouver un tenseur énergie impulsion à partir d'un lagrangien qui serait déjà " moyenné " sur un ensemble de particules. Le fluide parfait est à ce titre un cas particulier, car il est possible de le déterminer de cette façon, quoique la démonstration en soit non triviale[2].
Au-delà de l'approximation de fluide parfait, on parle de fluide non parfait. Celui se se caractérise par le fait qu'il possède une certaine viscosité, sciendée en une viscosité cinématique et une viscosité dynamique. Cette viscosité est à l'origine d'échanges de chaleur entre différentes portions du fluide. La prise en compte de ces différents effets correspond à la définition d'un fluide non parfait. Elle s'accompagne de modifications de l'équation d'Euler, dans laquelle deux termes proportionnels aux viscosités sont ajoutés, ainsi que la prise en compte explicite de la thermodynamique associée au fluide, par le fait que l'entropie d'un élément de fluide varie avec le temps.