Dans un espace affine normé, un losange est un parallélogramme ayant deux côtés consécutifs de même longueur.
Pour tout quadrilatère d'un plan affine euclidien (espace affine euclidien de dimension 2) les propositions suivantes sont équivalentes :
Ces équivalences sont cependant en défaut dans le cas d'un losange aplati (le point 3 n'a alors pas de sens) :
Soit ABCD un quadrilatère. Soit I le milieu de [AC] et J le milieu de [BD].
Comme A
Montrons (1) implique (2) :
On suppose que ABCD est un losange.
Comme c'est un parallélogramme, on a AB = CD, BC = AD et comme c'est un losange, on a AB = CB. Par transitivité, AB = BC = CD = DA.
Montrons (2) implique (3) :
On suppose que AB = BC = CD = DA.
De AB = BC et CD = DA, on conclut (DB) = dAC. Ainsi (DB) est perpendiculaire à (AC) et I appartient à (DB) et (AC).
De BC = CD, on conclut que
On a
Comme (AC) et (BD) sont perpendiculaires, elles ont un unique point commun et donc I = J. ABCD a ses diagonales qui se coupent en leur milieu, c'est donc un parallélogramme.
Montrons (3) implique (1) :
On suppose que (AC) et (BD) sont perpendiculaires et que ABCD est un parallélogramme. Comme (AC) est perpendiculaire à (BD) et passe par J, on conclut que (AC) = dBD et donc que CB = CD.
La définition du losange comme étant un parallélogramme impose qu'un losange est une figure plane. Il existe des quadrilatères (avec quatre sommets bien distincts) ayant les quatre côtés de même longueur qui ne sont pas des losanges. Il suffit de se placer dans un espace affine euclidien de dimension 3 et de faire subir à un côté d'un "vrai losange" une rotation suivant l'une des ses diagonales.
Si a et b sont les longueurs des diagonales, alors l'aire du losange est :
en effet, les diagonales définissent quatre triangles rectangles qu'il suffit de réagencer pour avoir un rectangle dont les côtés sont a/2 et b (par exemple) ; on applique alors la formule donnant l'aire du rectangle.
Un rhomboèdre est un polyèdre dont les six faces sont des losanges.
" Le Losange " ou " la marque au losange " sont des expressions régulièrement utilisées pour désigner la marque automobile Renault, par analogie à la forme de son logo.