Hypocycloïde - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs est disponible ici.
Contruction d'une hypocycloïde
Contruction d'une hypocycloïde

Une hypocycloïde est une courbe plane transcendante, trajectoire d'un point fixé à un cercle qui roule sans glisser sur un autre cercle dit directeur et à l'intérieur de celui-ci. Il s'agit donc d'un cas particulier de cycloïde à centre, qui est une catégorie de courbe cycloïdale.

Étymologie et histoire

Le mot est une extension de cycloïde, inventé en 1599 par Galilée, et a la même étymologie : il vient du grec hupo (sous), kuklos (cercle, roue) et eidos (forme, " semblable à ").

La courbe elle-même fut étudiée par Albrecht Durer en 1525, Rømer en 1674 (qui la baptisa) et Daniel Bernoulli en 1725.

Définition mathématique

Une hypocycloïde peut être définie par l'équation paramétrique suivante :

x(\theta) = (R-r) \cos \theta + r \cos (\frac{R-r}{r} \theta) \,
y(\theta) = (R-r) \sin \theta - r \sin (\frac{R-r}{r} \theta) \,

R\, est le rayon du cercle de base et r\, celui du cercle roulant. Avec q={R \over r}, cette équation peut donc également s'écrire :

x(\theta) = r   \left[(q-1) \cos \theta + \cos (q-1) \theta     \right] \,
y(\theta) = r  \left[(q-1) \sin \theta - \sin (q-1) \theta \right]\,

Propriétés

La courbe est formée d'arcs isométriques (appelés arches) séparés par des points de rebroussements. Si q est rationnel (et peut donc s'écrire q=a/b où a et b sont des entiers), a représente le nombre d'arches de la courbe. On peut aussi voir ces deux grandeurs de la manière suivante :

  • a représente le nombre de rotations du cercle roulant nécessaires pour ramener le point mobile à sa position de départ,
  • b représente le nombre de tours du cercle de base nécessaires au cercle roulant pour revenir au point de départ.

Les points de rebroussements sont obtenus pour \theta = \frac{2k \pi }{q}. La longueur d'une arche est de 8 \frac{q-1}{q^2}R.
Si q est entier, la longueur totale de la courbe vaut {4 \over \pi}(1+{1 \over q}) fois la longueur du cercle de base, et l'aire totale vaut (1-{1 \over q})(1-{2 \over q}) fois celle du cercle de base.

Le théorème de la double génération prouve qu'une hypocycloïde est aussi une péricycloïde, c'est-à-dire la courbe décrite par un point d'un cercle de rayon r+R roulant sans glisser sur ce cercle directeur en le contenant.

Les petites oscillations du pendule de Foucault forment également une hypocycloïde.

Un escalator sous l'océan
Il y a 10 heures
Page générée en 0.608 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise