Article d'analyse vectorielle | |
![]() ![]() |
|
Objets d'étude | |
Champ vectoriel | Champ scalaire |
Équation aux dérivées partielles | |
de Laplace – de Poisson | |
Opérateurs | |
Nabla | Gradient |
Rotationnel | Divergence |
Laplacien scalaire | Bilaplacien |
Laplacien vectoriel | D'alembertien |
Théorèmes | |
de Green | de Stokes |
de Helmholtz | de flux-divergence |
du gradient | du rotationnel |
Nabla, noté
La forme de Nabla vient d'un delta (Δ) renversé, à cause d'une utilisation comparable (calcul différentiel), elle a été introduite par Peter Guthrie Tait en 1867. D'abord surnommé avec malice " atled " (delta à l'envers) par James Maxwell, le nom Nabla lui fut donné par Tait sur l'avis de William Robertson Smith, en 1870, par analogie de forme avec une harpe grecque qui dans l'antiquité portait ce nom.
Ceci est une liste de quelques formules d'analyse vectorielle d'emploi général en travaillant avec plusieurs systèmes de coordonnées.
Opération | Coordonnées cartésiennes (x,y,z) | Coordonnées cylindriques (ρ,?,z) | Coordonnées sphériques (r,θ,?) |
---|---|---|---|
Définition des coordonnées |
![]() |
![]() |
|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Règles de calcul non évidentes:
|