En mathématiques, l'inégalité de Cauchy-Schwarz, aussi appelée inégalité de Schwarz, ou encore inégalité de Cauchy-Bunyakovski-Schwarz, se rencontre dans de nombreux domaines tels que l'algèbre linéaire avec les vecteurs, l'analyse avec les séries et en intégration avec les intégrales de produits.
L'inégalité s'énonce de la façon suivante :
Les deux membres sont égaux si et seulement si x et y sont linéairement dépendants.
Une conséquence de l'inégalité de Cauchy-Schwarz est que le produit scalaire est une fonction continue.
Dans le cas de l'espace euclidien
Dans le cas des fonctions à valeurs complexes de carré intégrable, l'inégalité de Cauchy-Schwarz s'écrit :
Ces deux dernières formulations sont généralisées par l'inégalité de Hölder.
Démontrons le résultat dans le cas d'un préhilbertien complexe.
Pour tout couple de vecteurs (x,y), par définition du produit scalaire hilbertien et de la norme associée:
On note que la dernière inégalité a un sens car
Ainsi, le polynôme à coefficients réels
Ce qui entraîne bien l'inégalité annoncée.
Si les vecteurs x et y sont liés, on peut sans perte de généralité supposer que
Réciproquement, supposons qu'on ait l'égalité
Il admet pour racine réelle double
Dans le cas d'un espace réel la démonstration est analogue. On peut aussi proposer une preuve légèrement différente :
La preuve pour y = 0 est triviale, on considère donc
Prenons
Ainsi
Puis
Cette preuve peut facilement être adaptée au cas complexe.
Articles de mathématiques en rapport avec l'algèbre bilinéaire |
Espace euclidien | Forme bilinéaire | Forme quadratique | Forme sesquilinéaire | Orthogonalité | Base orthonormale | Projection orthogonale | Inégalité de Cauchy-Schwarz | Inégalité de Minkowski | Matrice définie positive | Matrice semi-définie positive | Décomposition QR | Déterminant de Gram | Hermitien | Espace de Hilbert | Base de Hilbert | Théorème spectral | Théorème de Stampacchia | Théorème de Riesz | Théorème de Lax-Milgram | Théorème de représentation de Riesz |