Trigonométrie complexe
Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Extension des fonctions circulaires

Dans le corps des nombres complexes, grâce aux formules d'Euler, les fonctions trigonométriques peuvent se définir ainsi :

\sin z = \frac {e^{iz} - e^{-iz}} {2i} = \frac {\sinh iz} {i} = \sum _{k=0}^{\infty}{\frac {(-1)^k z^{2k+1}} {(2k+1)!}}
\cos z = \frac {e^{iz} + e^{-iz}} {2} = {\cosh iz}  = \sum _{k=0}^{\infty}{\frac {(-1)^k z^{2k}} {(2k)!}}
\tan z = \frac {\sin z} {\cos z} = -i  \frac {\sinh iz} {\cosh iz} = -i \tanh iz = -i \frac {e^{iz} - e^{-iz}} {e^{iz} + e^{-iz}}

De même que leurs fonctions réciproques :

\arcsin z = -i \ln \left( i z + \sqrt { 1-z^2} \right)
\arccos z = -i \ln \left( z + \sqrt {z^2-1} \right)
\arctan z = \frac i 2 \Big( \ln(1 - iz) - \ln(1+iz) \Big)

Ces fonctions souffrent des mêmes problèmes d'indétermination que le logarithme (En mathématiques, une fonction logarithme est une fonction définie sur à valeurs dans , continue et transformant un produit en somme. Le logarithme de base a où a est un réel strictement positif différent de 1 est une fonction...) complexe.

Sujets liés

  • Fonction trigonométrique (En mathématiques, les fonctions trigonométriques sont des fonctions d'angle importantes pour étudier les triangles et modéliser des phénomènes périodiques. Elles peuvent être définies...)
  • Fonction exponentielle (La fonction exponentielle est l'une des applications les plus importantes en analyse, ou plus généralement en mathématiques et dans ses domaines...)
  • Fonction hyperbolique (En mathématiques, on appelle fonctions hyperboliques les fonctions cosinus hyperbolique, sinus hyperbolique et tangente hyperbolique. Les nom de sinus, cosinus et tangente proviennent de leur...)
  • Nombre (La notion de nombre en linguistique est traitée à l’article « Nombre grammatical ».) complexe
Page générée en 0.140 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique