Pyramide - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs est disponible ici.

Cet article traite du polyèdre pyramide (une forme à trois dimensions); pour d'autres versions incluant les pyramides architecturale.

Ensemble des pyramides
Pyramide carrée
Faces n triangles,
1 n-gone
Arêtes 2n
Sommets n+1
Groupe de symétrie Cnv
Polyèdre dual Auto-duaux
Propriétés convexe

Une pyramide (du grec pyramis) à n cotés est un polyèdre formé en reliant une base polygonale de n cotés à un point, appelé l'apex, par n faces triangulaires (n ≥ 3). En d'autres mots, c'est un solide conique avec une base polygonale. Ce sont des grecs qui ont donné le nom "Pyramide", en comparant les momuments égyptiens avec une de leurs patisseries appelée "pyramis", et de forme similaire !

Lorsque cela n'est pas précisé, la base est généralement supposée carrée. Pour une pyramide triangulaire chaque face peut servir de base, avec le sommet opposé pour apex. Le tétraèdre régulier, un des solides de Platon, est une pyramide triangulaire. Les pyramides carrées et pentagonales peuvent aussi être construites avec toutes les faces régulières, et par conséquent sont des solides de Johnson. Toutes les pyramides sont des auto-duaux.

Les pyramides sont une sous-classes des prismatoïdes.

Volume

Le volume d'une pyramide est V = \frac{1}{3} Ah A est l'aire de la base et h la hauteur de la base à l'apex. Ceci est valable pour toute localisation de l'apex, à condition que h soit mesuré comme la distance perpendiculaire à partir du plan qui contient la base.

Aire de la surface

L'aire de la surface d'une pyramide régulière est A = A_b + \frac{ps}{2} Ab est l'aire de la base, p est le périmère de la base et s est la hauteur de la pente le long de la bisectrice d'une face (ie la longueur à partir du milieu d'une arête quelconque de la base jusqu'à l'apex).

Pyramides avec des faces polygonales

Si toutes les faces sont des polygones réguliers, la base de la pyramide peut être un polygone régulier de 3, 4 ou 5 cotés :

Nom Tétraèdre Pyramide carrée Pyramide pentagonale
Classe Solide de Platon Solide de Johnson (J1) Solide de Johnson (J2)
Base Triangle équilatéral Carré Pentagone régulier
Groupe
de symétrie
Td C4v C5v

Le centre géométrique d'une pyramide carrée est localisé sur l'axe de symétrie, à un quart de la base vers l'apex.

Symétrie

Si la base est régulière et l'apex est au-dessus du centre, le groupe de symétrie d'une pyramide à n cotés est Cnv d'ordre 2n, excepté dans le cas d'un tétraèdre régulier, qui possède le groupe de symétrie plus grand Td d'ordre 24, qui a quatre versions de C3v pour sous-groupes. Le groupe de rotation est Cn d'ordre n, excepté dans le cas d'un tétraèdre régulier, qui possède le groupe de rotation plus grand T d'ordre 12, qui a quatre versions de C3 pour sous-groupes.

Symbolique

La forme pyramidale serait magique, et augmenterait certaines qualités en elle, à un endroit précis.

Page générée en 0.095 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise