Transformateur électrique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs est disponible ici.

Un transformateur électrique est un convertisseur qui permet de modifier les valeurs de la tension et de l'intensité du courant délivrées par une source d'énergie électrique alternative en un système de tension et de courant de valeurs différentes mais de même fréquence et de même forme. Il effectue cette transformation avec un excellent rendement. Il est analogue à un engrenage en mécanique (le couple sur chacune des roues dentées étant l'analogue de la tension et la vitesse de rotation étant l'analogue du courant).

On distingue les transformateurs statiques et les commutatrices. Dans un transformateur statique, l'énergie est transférée du primaire au secondaire par l'intermédiaire du circuit magnétique que constitue la carcasse du transformateur. Ces deux circuits sont alors magnétiquement couplés. Ceci permet de réaliser un isolement galvanique entre les deux circuits. Dans une commutatrice, l'énergie est transmise de manière mécanique entre une génératrice et un moteur électrique.

Invention

Lucien Gaulard, jeune électricien français, présente à la Société française des Electriciens, en 1884, un " générateur secondaire ", dénommé depuis transformateur.

En 1883, Lucien Gaulard et John Dixon Gibbs réussissent à transmettre pour la première fois, sur une distance de 40 km, du courant alternatif sous une tension de 2000 volts à l'aide de transformateurs avec un noyau en forme de barres.

En 1884 Lucien Gaulard met en service une liaison bouclée de démonstration (133 Hz) alimentée par du courant alternatif sous 2000 volts et allant de Turin à Lanzo et retour (80 km). On finit alors par admettre l'intérêt du transformateur qui permet d'élever la tension délivrée par un alternateur et facilite ainsi le transport de l'énergie électrique par des lignes à haute tension. La reconnaissance de Gaulard interviendra trop tardivement.

Entre-temps, des brevets ont été pris aussi par d'autres. Le premier brevet de Gaulard en 1882 n'a même pas été délivré en son temps, sous prétexte que l'inventeur prétendait pouvoir faire " quelque chose de rien " ! Gaulard attaque, perd ses procès, est ruiné, et finit ses jours dans un asile d'aliénés. Le transformateur de Gaulard de 1886 n'a pas grand chose à envier aux transformateurs actuels, son circuit magnétique fermé (le prototype de 1884 comportait un circuit magnétique ouvert, d'où un bien médiocre rendement) est constitué d'une multitude de fils de fer annonçant le circuit feuilleté à tôles isolées.

Ainsi, en 1885, les Hongrois Károly Zipernowsky, Miksá Déry et Otto Titus Bláthy mettent au point un transformateur avec un noyau annulaire commercialisé dans le monde entier par la firme Ganz à Budapest. Aux USA, W. Stanley développe des transformateurs.

Constitution

Il est constitué de deux parties essentielles, le circuit magnétique et les enroulements.

Le circuit magnétique

Le circuit magnétique d'un transformateur est soumis à un champ magnétique variable au cours du temps. Pour les transformateurs reliés au secteur de distribution, cette fréquence est de 50 ou 60 Hertz. Le circuit magnétique est généralement feuilleté pour réduire les pertes par courants de Foucault, qui dépendent de l'amplitude du signal et de sa fréquence. Pour les transformateurs les plus courants, les tôles empilées ont la forme de E et de I, permettant ainsi de glisser une bobine à l'intérieur des fenêtres du circuit magnétique ainsi constitué.

Les circuits magnétiques des transformateurs " haut de gamme " ont la forme d'un tore. Le bobinage des tores étant plus délicat, le prix des transformateurs toriques est nettement plus élevé.

Fonctionnement du transformateur monophasé

Transformateur parfait ou idéal

Transformateur monophasé idéal
Transformateur monophasé idéal

C'est un transformateur virtuel sans aucune perte. Il est utilisé pour modéliser les transformateurs réels. Ces derniers sont considérés comme une association d'un transformateur parfait et de diverses impédances.

Dans le cas où toutes les pertes et les fuites de flux sont négligées, le rapport du nombre de spires primaires, secondaires détermine totalement le rapport de transformation du transformateur.

  • Exemple: Un transformateur dont le primaire comporte 230 spires alimenté par une tension sinusoïdale de 230 V de tension efficace, le secondaire qui comporte 12 spires présentera à ses bornes une tension sinusoïdale dont la valeur efficace sera égale à 12 V. (Attention 1 spire n'est pas égale à 1 V)
\frac{U_2}{U_1} =  \frac{N_2}{N_1}

Comme on néglige les pertes, la puissance est transmise intégralement, c'est pourquoi l'intensité du courant dans le secondaire sera dans le rapport inverse soit près de 19 fois plus importante que celle circulant dans le primaire.

de l'égalité des puissances apparentes : S_1 =S_2 \,, soit :U_1I_1 =  U_2I_2 \, on tire \frac{U_2}{U_1} = \frac{I_1}{I_2}

  • Au risque de surchauffer très rapidement, le conducteur du secondaire devra avoir une section adaptée à l'intensité de ce courant.

Les pertes de puissance d'un transformateur

Les pertes par effet Joule

Les pertes par effet Joule dans les enroulements sont appelées également " pertes cuivre ", elles dépendent de la résistance de ces enroulements et de l'intensité du courant qui les traverse : avec une bonne approximation elles sont proportionnelles au carré de l'intensité. P_J = \sum_i R_i I_i^2 avec R_i \, résistance de l'enroulement i et I_i \, intensité du courant qui le traverse.

Les pertes magnétiques

Ces pertes dans le circuit magnétique, également appelées " pertes fer ", dépendent de la fréquence et de la tension d'alimentation. À fréquence constante on peut les considérer comme proportionnelles au carré de la tension d'alimentation. ces pertes ont deux origines physiques :

  • Les pertes par courants de Foucault. Elle sont minimisées par l'utilisation de tôles magnétiques vernies, donc isolées électriquement les unes des autres pour constituer le circuit magnétique, ce en opposition à un circuit massif.
  • Les pertes par hystérésis

Mesure des pertes

La méthode des pertes séparées consiste à placer le transformateur dans deux états :

  • Un état pour lequel les pertes Joules sont élevées (fort courant) et les pertes magnétiques très faibles (faible tension). La mise en court-circuit du transformateur (essai en court-circuit) avec une alimentation en tension réduite permet de réaliser ces deux conditions. Les pertes du transformateur sont alors quasiment égales aux pertes Joules.
  • Un état pour lequel les pertes magnétiques sont élevées (forte tension) et ou les pertes joules sont très faibles (faible courant). Le fonctionnement à vide (essai à vide), c’est-à-dire sans récepteur relié au secondaire, correspond à ce cas. Les pertes sont alors quasiment égales aux pertes magnétiques.

On dit que l'on a deux états qui permettent " une séparation " des pertes d'ou l'expression " méthode des pertes séparées ". Elles ont également l'avantage de permettre la mesure du rendement avec une consommation de puissance réduite, sans faire l'essai en fonctionnement réel. Ceci est intéressant lorsqu'on réalise les tests d'un transformateur de forte puissance et que l'on ne dispose pas dans l'atelier de la puissance nécessaire pour l'alimenter à son régime nominal. Mis à part pour les plates-formes d'essai chez les constructeurs, cette méthode n'a donc pas grand intérêt pour uniquement connaître le rendement car, dans ce contexte, une mesure directe à puissance nominale (normale) est bien souvent suffisante.

En revanche, dans le cadre de l'électrotechnique théorique, elle est importante car elle permet de déterminer les éléments permettant de modéliser le transformateur.

Les différents types de transformateurs

Ces distinctions sont souvent liées aux très nombreuses applications possibles des transformateurs

Autotransformateur

Symbole d'un autotransformateur. 1 indique le primaire; 2 le secondaire
Symbole d'un autotransformateur.
1 indique le primaire; 2 le secondaire

Il s'agit d'un transformateur sans isolement entre le primaire et le secondaire.

Dans cette structure, le secondaire est une partie de l'enroulement primaire. Le courant alimentant le transformateur parcourt le primaire en totalité et une dérivation à un point donné de celui-ci détermine la sortie du secondaire. Le rapport entre la tension d'entrée et la tension de sortie est identique à celui du type isolé.

A rendement égal, un autotransformateur occupe moins de place qu'un transformateur ; cela est dû au fait qu'il n'y a qu'un seul bobinage, et que la partie commune du bobinage unique est parcourue par la différence des courants primaire et secondaire. L'autotransformateur n'est intéressant que lorsque les tensions d'entrée et de sortie sont du même ordre de grandeur : par exemple, 230V/115V. Une de ses principales applications est pour utiliser dans un pays un matériel électronique prévu pour un pays où la tension du secteur est différente (États-Unis, Japon...). Il présente cependant l'inconvénient de ne pas présenter d'isolation galvanique entre le primaire et le secondaire (c’est-à-dire que le primaire et le secondaire sont directement connectés), ce qui peut présenter des risques du point de vue de la sécurité des personnes.

Transformateur variable - variac - alternostat

Il s'agit d'une variété d'auto-transformateur, puisqu'il ne comporte qu'un seul bobinage. La dérivation de sortie du secondaire peut se déplacer grâce à un contact glissant sur les spires du primaire.

Transformateur d'isolement

Le transformateur d'isolement est uniquement destiné à créer un isolement électrique entre plusieurs circuits pour des raisons bien souvent de sécurité ou de résolution de problèmes techniques. Tous les transformateurs à enroulement primaire isolé du (des) secondaire(s) devraient être considérés comme des transformateurs d'isolement ; toutefois, en pratique, ce nom désigne des transformateurs dont la tension de sortie a la même valeur efficace que celle de l'entrée. Ils sont, par exemple, largement utilisés dans les blocs opératoires : chaque salle du bloc est équipée de son propre transformateur d'isolement, pour éviter qu'un défaut qui y apparaîtrait n'engendre des dysfonctionnements dans une autre salle. Un autre intérêt est changer de régime de neutre (cas d'utilisation de matériel informatique et/ou d'équipements électroniques sensibles dans une installation IT).

Transformateur d'impédance

Le transformateur est toujours un transformateur d'impédance, mais les électroniciens donnent ce nom aux transformateurs qui ne sont pas utilisés dans des circuits d'alimentation.

Le transformateur d'impédance est principalement destiné à adapter l'impédance de sortie d'un amplificateur à sa charge.

  • Ce genre de transformateur était en particulier employé dans la restitution sonore, pour adapter la sortie d'un amplificateur audio à lampes (haute impédance), avec les haut-parleurs destinés à la restitution du son et caractérisés par une impédance basse.
  • En électronique audio professionnelle, on utilise toujours des transformateurs pour les entrées et sorties d'appareils haut de gamme, ou bien dans la fabrication de " Di-box " ou boîte de direct. Le transformateur est alors utilisé, non seulement pour adapter l'impédance et le niveau de sortie des appareils (synthétiseurs, basse électrique, etc) aux entrées micro de la console de mixage mais en outre pour symétriser la sortie des appareils connectés.
  • En technique des hautes fréquences, on utilise également des transformateurs dont le circuit magnétique est en ferrite ou sans circuit magnétique (aussi appelé transformateur sans noyau) pour adapter les impédances de sortie d'un amplificateur, d'une ligne de transmission et d'une antenne. En effet, pour un transfert optimal de puissance de l'amplificateur vers l'antenne, il faut que le taux d'ondes stationnaires (TOS) soit égal à 1.

De tels montages présentent en outre l'avantage de rendre les appareils connectés beaucoup plus résistants aux perturbations électromagnétiques par une augmentation significative du CMRR (Common Mode Rejection Ratio) ou taux de réjection du mode commun.

Voici deux excellentes introductions (publicitaires et en anglais) http://www.jensen-transformers.com/apps_wp.html, et http://www.jeffrowland.com/Technology/LineLevelTrans.htm

Transformateur d'intensité

Ce type de transformateur, appelé aussi transformateur de courant, est dédié à l'adaptation des courants mis en jeu dans des circuits différents mais fonctionnellement interdépendants.

Un tel transformateur autorise la mesure des courants alternatifs élevés. Il possède une spire au primaire, et plusieurs spires secondaires : le rapport de transformation permet l'usage d'un ampèremètre classique pour mesurer l'intensité au secondaire, image de l'intensité au primaire pouvant atteindre plusieurs kiloampères (kA).

Transformateur de tension

Ce transformateur est l'un des moyens pour mesurer des tensions alternatives élevées. Il s'agit d'un transformateur qui a la particularité d'avoir un rapport de transformation étalonné avec précision, mais prévu pour ne délivrer qu'une très faible charge au secondaire, correspondant à un voltmètre. Le rapport de transformation permet de mesurer des tensions primaires s'exprimant en kilovolts (kV). On le rencontre en HTA et HTB. D'autres technologies existent, comme celle du diviseur capacitif.

Transformateur haute fréquence

Circuit magnétique des transformateurs HF

Les pertes par courants de Foucault au sein du circuit magnétique sont directement proportionnelles au carré de la fréquence mais inversement proportionnelles à la résistivité du matériau qui le constitue. Afin de limiter ces pertes, le circuit magnétique des transformateurs HF est réalisé à l'aide de matériaux ferromagnétiques isolants :

  • les ferrites douces : oxydes mixtes de fer et de cuivre ou de zinc ;
  • les matériaux nanocristallins.

Transformateur d'impulsions

Ce type de transformateur est utilisé pour la commande des thyristors, triacs et des transistors. Il présente, par rapport à l’opto-coupleur, les avantages suivants: fonctionnement possible à fréquence élevée, simplification du montage, possibilité de fournir un courant important, bonne tenue en tension.

Transformateur triphasé

Justification

Dans les réseaux électriques triphasés, on pourrait parfaitement envisager d'utiliser 3 transformateurs, un par phase. Dans la pratique, l'utilisation de transformateurs triphasés (un seul appareil regroupe les 3 phases) est généralisée : cette solution permet la conception de transformateurs bien moins coûteux, avec en particulier des économies au niveau du circuit magnétique. Les transformateurs monophasés ne sont en fait guère utilisés, sauf pour de très grosses puissances apparentes (typiquement supérieures à 500 MVA), où le transport d'un gros transformateur triphasé est problématique et incite à l'utilisation de 3 unités physiquement indépendantes.

Indice de couplage

C'est la caractéristique d'un transformateur triphasé indiquant le type de couplage réalisé au primaire et au secondaire ainsi que le déphasage entre le système de tensions primaires et le système de tensions secondaires. Les systèmes triphasés de tension sont : " triangle " (D ou d) et " étoile " (Y ou y). La première lettre de l'indice de couplage est toujours en majuscule et indique le système triphasé à tension la plus élevée ; la deuxième lettre est en minuscule et indique le système à tension la plus basse. Dans le système " étoile ", le " neutre " (point central de l'étoile) peut être sorti au bornier du transformateur : ceci est indiqué par la présence de la lettre N (ou n) dans l'indice de couplage. Il existe également le couplage zig-zag (z), utilisé majoritairement au secondaire ; il possède un neutre. Ce couplage permet, lors de la perte d'une phase au primaire, d'avoir au secondaire une tension pratiquement identique sur les trois phases. Enfin, l'indice de couplage est complété par un " indice horaire " qui donne, par pas de 30°, le déphasage horaire en 12èmes de tour (comme sur une montre) entre le primaire et le secondaire du transformateur (ex.: 11= 11x30° = 330° en sens horaire ou 30° en sens anti-horaire).

Par exemple, un indice de couplage " Dyn11 " définit donc un transformateur dont :

  • le système triphasé de tension élevé est en " triangle " ;
  • le système triphasé de tension basse est en " étoile " avec neutre sorti (indiqué par le " n ") ;
  • le décalage entre les deux systèmes est de 330° (= - 30° ou bien 11 * 30°).

Commutatrice

Une commutatrice est un système électrotechnique permettant de modifier une alimentation électrique (tension / courant), en utilisant deux machines tournantes couplées mécaniquement. Une est utilisée en moteur, l'autre en génératrice. Les caractéristiques différentes des deux machines permettent une transformation de l'énergie électrique au sens des tensions et des courants.

Malgré un faible rendement et un taux d'usure plus élevé, l'intérêt principal de la commutatrice par rapport au transformateur était de pouvoir produire directement une alimentation continue à partir d'une alimentation alternative. Ainsi, jusqu'au début du XXe siècle, le 750V continu alimentant les rames du métro parisien était généré de cette manière, à partir du réseau public qui délivrait uniquement une tension alternative.

Ces dispositifs ont été remplacés par des convertisseurs statiques en électronique de puissance.

Page générée en 0.006 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise