La machine asynchrone, connue également sous le terme " anglo-saxon " de machine à induction , est une machine à courant alternatif sans connexion entre le stator et le rotor. Le terme asynchrone provient du fait que la vitesse de ces machines n'est pas forcément proportionnelle à la fréquence des courants qui la traversent.
La machine asynchrone a longtemps été fortement concurrencée par la machine synchrone dans les domaines de forte puissance, jusqu'à l'avènement de l'électronique de puissance. On les retrouve aujourd'hui dans de nombreuses applications, notamment dans le transport (métro, trains, propulsion des navires), de l'industrie (machines-outil), dans l'électroménager. Elles étaient à l'origine uniquement utilisées en moteur mais, toujours grâce à l'électronique de puissance, sont de plus en plus souvent utilisées en génératrice. C'est par exemple le cas dans les éoliennes.
Pour fonctionner en courant monophasé, ces machines nécessitent un système de démarrage. Pour les applications de puissance, au-delà de quelques kilowatts, les moteurs asynchrones sont uniquement alimentés par des systèmes de courants triphasés
La paternité de la machine asynchrone est controversée entre trois inventeurs : en 1887, Nikola Tesla dépose un brevet sur la machine asynchrone [1],[2], puis en mai de l'année suivante cinq autres brevets. Pendant la même période Galileo Ferraris publie des traités sur les machines tournantes, avec une expérimentation en 1885, puis une théorie sur le moteur asynchrone en avril 1888 [3]. En 1889, Michail Ossipowitsch Doliwo-Dobrowolski, électricien allemand d'origine russe, invente le premier moteur asynchrone à courant triphasé à cage d'écureuil qui sera construit industriellement à partir de 1891 [4].
Du fait de sa simplicité de construction, d'utilisation et d'entretien, de sa robustesse et son faible prix de revient, la machine asynchrone est aujourd'hui très couramment utilisée comme moteur dans une gamme de puissance allant de quelques centaines de watts à plusieurs milliers de kilowatts.
Quand la machine asynchrone est alimentée par un réseau à fréquence fixe, il est difficile de faire varier sa vitesse. En outre, au démarrage, le couple est faible et le courant appelé est très élevé. Deux solutions historiques ont résolu ce dernier problème : le rotor à encoches profondes et le rotor à double cage découvert en 1912 par Paul Boucherot. Grâce aux progrès de l'électronique de puissance, l'alimentation par un onduleur à fréquence variable, permet maintenant de démarrer la machine convenablement et de la faire fonctionner avec une vitesse réglable dans une large plage. C'est pourquoi il est utilisé pour la motorisation des derniers TGV ainsi que des nouveaux métros parisiens.[5] ,[6] .
La machine se compose de deux pièces principales :
Cette machine peut, selon sa construction, être reliée à un réseau monophasé ou polyphasé (généralement triphasé car c'est celui de la distribution).
La machine asynchrone est la machine électrique la plus utilisée dans le domaine des puissances supérieures à quelques kilowatts car elle offre alors le meilleur rapport qualité prix. Surtout depuis l'apparition dans les années 1970 de variateurs permettant de faire varier la fréquence de rotation du moteur dans une large gamme[7].
Bien que réversible, la machine asynchrone est principalement (mais pas exclusivement) utilisée en moteur.
Les courants statoriques créent un champ magnétique tournant dans le stator. La fréquence de rotation de ce champ est imposée par le fréquence des courants statoriques, c’est-à-dire que sa vitesse de rotation est proportionnelle à la fréquence de l'alimentation électrique. La vitesse de ce champ tournant est appelée vitesse de synchronisme.
L'enroulement au rotor est donc soumis à des variations de flux (du champ magnétique). Une force électromotrice induite apparaît qui crée des courants rotoriques. Ces courants sont responsables de l'apparition d'un couple qui tend à mettre le rotor en mouvement afin de s'opposer à la variation de flux : loi de Lenz. Le rotor se met donc à tourner pour tenter de suivre le champ statorique.
La machine est dite asynchrone car elle est dans l'impossibilité, sans la présence d'un entraînement extérieur, d'atteindre la même vitesse que le champ statorique. En effet, dans ce cas, vu dans le référentiel du rotor, il n'y aurait pas de variation de champ magnétique ; les courants s'annuleraient, de même que le couple qu'ils produisent, et la machine ne serait plus entraînée. La différence de vitesse entre le rotor et le champ statorique est appelée vitesse de glissement.
Lorsqu'il est entraîné au-delà de la vitesse de synchronisme — fonctionnement hypersynchrone — la machine fonctionne en générateur alternatif. Mais son stator doit être forcément relié au réseau car lui seul peut créer le champ magnétique nécessaire pour faire apparaître les courants rotoriques.
Un fonctionnement en générateur alternatif autonome est toutefois possible à l'aide de condensateurs connectés sur le stator, à condition qu'il existe un champ magnétique rémanent. On retrouve cette même problématique lorsqu'on cherche à faire fonctionner des machines à courant continu à excitation série en génératrice. À défaut, des dispositifs d'électronique de puissance et une batterie permettent d'amorcer le fonctionnement en génératrice autonome. Cette solution est mise en œuvre pour produire de l'électricité à l'aide d'éoliennes dans des sites isolés.
Le glissement est une grandeur qui rend compte de l'écart de vitesse de rotation d'une machine asynchrone par rapport à une machine synchrone hypothétique construite avec le même stator.
Le glissement est toujours faible, de l'ordre de quelques pour-cent : de 2 % pour les machines les plus grosses à 6 ou 7 % pour les petites machines triphasées, il peut atteindre 10 % pour les petites machines monophasées. Les pertes par effet Joule dans le rotor étant proportionnelles au glissement, un machine de qualité se doit de fonctionner avec un faible glissement.
La fréquence de synchronisme est toujours un sous-multiple entier de la fréquence du secteur
Soit
Le glissement correspond à la différence de vitesse entre le rotor et le champ statorique exprimée sous la forme d'un pourcentage de la fréquence de rotation.
Le glissement peut aussi être calculé à partir des vitesses angulaires
Exemple de plaque signalétique d'un moteur asynchrone triphasé industriel :
Mot 3~ 50/60Hz | IEC34 | IP55 |
---|---|---|
MT90L24-4 | ||
1.5 / 1.75 kW | 1420 / 1710 tr/min | |
380-420 / 440-480V - Y | 3.7 / 3.6A | |
220-240 / 250-280V - Δ | 6.4 / 6.3A | |
cos φ = 0.75 / 0.78 |
Moteur triphasé utilisable en 50 et 60 Hz | Plaque établie conformément à la norme internationale IEC34 | Classement IP (Indice de Protection) |
---|---|---|
Numéro de série du constructeur | ||
Puissance utile nominale | fréquence de rotation nominale | |
Tension entre phase du réseau d'alimentation pour un couplage étoile | Courant de ligne nominal pour un couplage étoile | |
Tension entre phase du réseau d'alimentation pour un couplage triangle | Courant de ligne nominal pour un couplage triangle | |
facteur de puissance au régime nominal |
En monophasé :
En triphasé :
Le rendement :
Un variateur de vitesse est un équipement électrotechnique alimentant un moteur électrique de façon à pouvoir faire varier sa vitesse de manière continue, de l'arrêt jusqu’à sa vitesse nominale. La vitesse peut être proportionnelle à une valeur analogique fournie par un potentiomètre, ou par une commande externe : un signal de commande analogique ou numérique, issue d'une unité de contrôle. Un variateur de vitesse est constitué d'un redresseur combiné à un onduleur. Le redresseur va permettre d'obtenir un courant quasi continu. A partir de ce courant continu, l'onduleur (bien souvent à Modulation de largeur d'impulsion ou MLI) va permettre de créer un système triphasé de tensions alternatives dont on pourra faire varier la valeur efficace et la fréquence. Le fait de conserver le rapport de la valeur efficace du fondamental de la tension par la fréquence (U1/f) constant permet de maintenir un flux tournant constant dans la machine et donc de maintenir constante la fonction reliant la valeur du couple en fonction de (ns - n) (voir § 3-4-2-1 ci-dessous).
Lors d'un démarrage d'une machine asynchrone, le courant peut atteindre 8 fois le courant nominal de la machine. Si l'application utilise un variateur, c'est ce dernier qui se chargera d'adapter les tensions appliquées à la machine afin de limiter ce courant. En l'absence de variateur de vitesse, il existe plusieurs méthodes permettant de limiter le courant de démarrage. Elles ont été développées avant l'apparition de l'électronique de puissance mais sont encore utilisées de nos jours dans les installations anciennes ou par mesure d'économie pour des applications ne nécessitant pas de variateur en dehors du démarrage.
Plusieurs dispositifs permettent de réduire la tension aux bornes des enroulements du stator pendant la durée du démarrage du moteur ce qui est un moyen de limiter l'intensité du courant de démarrage. L'inconvénient est que le couple moteur est également diminué et que cela augmente la durée avant laquelle la machine atteint le régime permanent.
Lors d'un démarrage étoile-triangle, la machine est d'abord connectée au réseau avec un couplage étoile, puis une fois démarrée, on passe sur couplage triangle. Le fait de démarrer avec un couplage étoile permet de diviser par racine de trois la tension appliquée. Ainsi, le courant maximum absorbé est trois plus faible que lors d'un démarrage directement avec un couplage triangle. Le couple de démarrage est lui aussi trois plus faible que lors d'un démarrage en triangle. La surintensité lors du passage étoile-triangle est inférieure au courant d'appel d'un démarrage effectué directement en triangle.
Réalisée simplement à l'aide de contacteurs, cette méthode de démarrage est très économique.
Dans ce mode de démarrage, le stator de la machine asynchrone est relié à un auto-transformateur qui permet d'effectuer un démarrage sous tension variable. La tension est progressivement augmentée, l'intensité du courant ne dépassant pas la valeur maximale désirée.
Lors d'un démarrage résistif, on insère des résistances en série avec les enroulements statoriques ce qui a pour effet de limiter la tension à leurs bornes. Une fois le démarrage effectué, on court-circuite ces résistances. Cette opération peut être effectuée progressivement par un opérateur à l'aide de rhéostats de démarrage.
Lors d'un démarrage rotorique, des résistances de puissance sont insérées en série avec les enroulements du rotor. Ce type de démarrage permet d'obtenir un fort couple de démarrage avec des courants de démarrage réduits mais il ne peut être mis en œuvre qu'avec des machines à rotor bobiné munis de contacts glissants (bagues et balais) permettant les connexions électriques des enroulements rotoriques. Ces machines sont d'un prix de revient plus important que leurs homologues dits à " cage d'écureuil ".
On distingue plusieurs types de freinages :
Le principe consiste à inverser 2 phases pendant un court instant. Ceci est donc équivalent à un freinage hypersynchrone, mais à fréquence fixe. Le couple résistant est donc faible et le courant appelé est également très important (de l'ordre de 10 à 12 fois l'intensité nominale). La conséquence en est que les enroulements du moteur risquent un sur-échauffement : on peut prévoir des résistances supplémentaires afin de diminuer l'intensité. Enfin, avec cette méthode, le couple décélérateur reste négatif même lorsque la vitesse est égale à 0 tr/min, il faut donc prévoir de couper l'alimentation quand la vitesse est nulle (temporisation, contact centrifuge), sinon la rotation s'inverse.
Il est constitué d'un cylindre ferromagnétique entaillé d'encoches permettant d'y loger les bobinages. Ce cylindre est constitué d'un empilement de plaques de tôle afin de limiter les courants de Foucault.
Le stator d'une machine triphasée comporte 3 enroulements donc 6 bornes.
On peut réaliser une protection contre les échauffements anormaux des bobinages en plaçant au cœur de ceux-ci soit un disjoncteur thermique soit une sonde de température qui déclenche un relais de mise en arrêt, en cas de dépassement d'un seuil déterminé.
On peut distinguer 4 types de rotor :
Il est très difficile, pour une charge donnée et à partir des tensions et des impédances, de calculer les courants dans la machine et d'en déduire le couple et la fréquence de rotation.
Comme pour ces labyrinthes que l'on trouve dans les journaux, il est plus facile de partir du but à atteindre et de remonter vers le départ. On considère donc que l'on connaît les courants. À partir de l'expression des courants statoriques et rotoriques on déduit les flux du champ magnétique qu'ils produisent. Connaissant les courants et les flux, on écrit l'expression des tensions en appliquant la loi d'Ohm et la loi de Faraday, puis on identifie.
On considère que la machine possède une seule paire de pôles.
l'angle
Hypothèses :
Son circuit magnétique est homogène et non saturé. Ses diverses inductances sont constantes. Elle est aussi parfaitement équilibrée :
On fixe l'origine des temps de manière à ce que l'on puisse écrire :
On en déduit les courants des deux autres phases du stator :
Avec :
Avec :
Notations :
Le flux à traver la phase A du stator est :
On en change rien à cette expression en ajoutant : :
Comme : :
On remplace :
Or
On obtient finalement :
On pose:
Ces grandeurs cycliques permettent d'isoler chaque phase comme si elle était seule, comme si le flux qui la traverse ne dépendait que du seul courant qui alimente cette phase. L'introduction de ces grandeurs cycliques va permettre d'établir des modèles monophasés équivalents.
On pose également:
L'expression du flux devient alors plus simple. On applique la transformation complexe et l'on obtient le flux complexe d'une phase du stator :
Le calcul du flux rotorique se mène de manière identique avec une différence de signe.
Avec l'introduction des grandeurs cycliques
Le flux à travers un enroulement rotorique s'écrit:
Le rotor est en court-circuit.
Comme on a
Sous le vocable schéma équivalent, on désigne un circuit électrique composé de dipôles linéaires permettant de modéliser la machine réelle. Le schéma équivalent le plus pertinent est fonction du domaine d'utilisation et du degré de précision nécessaire. Dans le cas des machines asynchrones, il comprend, au minimum, une association de résistances et d'inductances.
Les deux équations suivantes :
correspondent à un schéma équivalent ne comportant que des tensions et des courants ayant une fréquence identique à celle de l'alimentation qui alimente la machine et dont le schéma est le suivant :
Les circuits magnétiquement couplés peuvent être transformés en de nombreux schémas équivalents (pour plus de détails, on se référera à l'article correspondant). Chacune de ces transformations conduit à un modèle possible pour décrire la machine asynchrone. Dans la pratique, seuls certains modèles sont effectivement utilisés.
Le modèle à fuites secondaires avec l'ensemble ramené au stator est le plus fréquent dans la littérature car il comporte des éléments que l'on peut identifier relativement simplement et de manière suffisamment précise et il est simple d'emploi.
avec :
Ces grandeurs ne sont pas calculables (en particulier Rr), mais l'important est de savoir que si l'on admet les hypothèses de départ, alors il existe un dipôle identique à celui représenté ci-dessus équivalent à une phase de la machine asynchrone alimentée par un système de tensions triphasées équilibré.
Il est intéressant pour les bilans de puissance de décomposer la résistance
On a considéré que le circuit magnétique était sans pertes, ce qui n'est pas le cas. Pour rendre compte des pertes fer qui dépendent du carré de l'alimentation, on ajoute dans ce modèle une résistance fictive RF en parallèle avec l'inductance statorique.
Après avoir établi que le schéma précédent correspondait à une phase de la machine asynchrone, on peut identifier le modèle correspondant à une machine quelconque en réalisant trois essais :
Réalisé sur une phase de la machine, il permet de mesurer la résistance statorique RS.
Lors d'un essai au synchronisme, le champ tourant et le rotor tournent à la même vitesse. Le glissement g est nul et 1/g tend vers l'infini. Le modèle équivalent d'une phase de la machine devient :
À l'aide d'un wattmètre, d'un ampèremètre et d'un voltmètre, on mesure la puissance active P0, la puissance réactive
on obtient les trois équations :
RS étant connue, on peut calculer les trois inconnues : RF,
Le courant IS0 étant faible lors de l'essai au synchronisme, on peut généralement négliger la perte de tension due à la resistance statorique devant la tension VS0. Les équations deviennent alors :
On calcule alors directement RF et
A vitesse nulle, le glissement g = 1. Cet essai est réalisé sous tension réduite afin de limiter l'intensité du courant à une valeur acceptable. Le modèle équivalent d'une phase de la machine devient :
À l'aide d'un wattmètre, d'un ampèremètre et d'un voltmètre, on mesure la puissance active P1, la puissance réactive
La tension VS1 étant faible, les courants circulants dans RF et
L'identification des derniers paramètres de la machine est alors rapide :
Le schéma établi précédemment permet d'obtenir facilement les caractéristiques électromécaniques de la machine asynchrone monophasée :
En effet la puissance électromagnétique utile, c’est-à-dire celle transformée en énergie mécanique correspond pour chaque phase à la puissance consommée par la résistance
La puissance électromécanique totale a donc pour expression :
Le modèle ci-dessus permet d'obtenir l'expression du couple soit en fonction du glissement soit en fonction de la vitesse. Le calcul est très simplifié et peut être fait à la main si l'on néglige la résistance statorique. Dans ce cas, on ajoute une erreur de 2 ou 3 %, mais on obtient une courbe dont l'allure est proche de la réalité. De toute façon, on ne doit pas perdre de vue que ce ne sont que des modèles.
Dans le cadre de cette approximation on a :
Avec
De l'expression de la puissance et des deux équations ci-dessus on en déduit l'expression du couple électromagnétique en fonction du glissement g :
Pour une machine à p paires de pôles on a :
Cela conduit à :
Le couple électromagnétique passe par un maximum
En introduisant ce couple maximal et le glissement correspondant dans l'équation du couple électromagnétique on obtient la relation :
La courbe représentative de l'expression du couple en fonction du glissement possède une symétrie par rapport à l'origine :
Cette courbe est plus habituelle et plus concrète, elle se déduit simplement de la courbe en fonction du glissement grâce à la relation :
Réglage de la vitesse de rotation des moteurs asynchrones triphasés (lien)
Les onduleurs les plus répandus sont les onduleurs MLI (à modulation de largeur d'impulsion) dont le mode de commande permet de garder le rapport U1/f constant et d'obtenir des courants quasiment sinusoïdaux. U1 étant la valeur efficace du fondamental.
En régime sinusoïdal, la conservation du rapport U/f permet au circuit magnétique d'être dans le même état magnétique quelle que soit la fréquence d'alimentation. Autrement dit, la forme du cycle d'hystérésis parcouru par le circuit magnétique reste identique quelque soit f.
Ceci a pour conséquence qu'une commande qui maintient U1/f constant, où U1 représente la valeur efficace du fondamental, permet de conserver la même courbe de couple en fonction du glissement pour n'importe quelle fréquence d'alimentation. Les autres harmoniques présents,multiples de 5 et 7, créent des couples pulsants dont la moyenne est nulle.
Pour cela, la machine asynchrone est alimenté par un onduleur délivrant une tension de fréquence f et dont la valeur efficace du fondamental V1 est telle que le rapport V1/f est maintenu constant.
Lorsque le rapport U/f est constant on peut écrire pour la partie linéaire de la caractéristique couple vitesse :
On reprend l'équation générale du couple :
On note Cmax le couple maximum.
On réécrit la relation flux/tension afin de faire apparaître le flux.
On note Φs la valeur efficace du flux nominal.
Si on garde le rapport
Après un développement limité au premier ordre de Tem lorsque g tend vers 0, on obtient
La courbe du couple en fonction de nS - n est unique.
Lors d'un démarrage (faible fem) à fort couple (courant important), la chute de tension due à la résistance statorique devient plus importante que la fem. Il est alors impossible d'obtenir le flux nominal dans la machine grâce à la loi U/f=cst. Pour compenser cela, les variateurs industriels proposent différentes lois U(f). Le choix de la loi à utiliser dépend de l'application.
Une fois que la tension nominale est atteinte, on augmente la fréquence d'alimentation du moteur sans augmenter sa tension. On parle alors de défluxage de la machine. Cela amène bien entendu une baisse du couple maximum délivrable par la machine. Un démarrage dans de tels conditions se fera donc à couple constant puis à puissance constante.
Les procédés de variation de vitesse pour les moteurs asynchrones sont générateurs de courants harmoniques.
La commande vectorielle est un terme générique désignant l'ensemble des commandes tenant compte en temps réel des équations du système qu'elle commande. Le nom de ces commandes vient du fait que les relations finales sont vectorielles à la différence des commandes scalaires. Les relations ainsi obtenues sont bien plus complexes que celles des commandes scalaires, mais en contrepartie elles permettent d'obtenir de meilleures performances lors des régimes transitoires. Il existe des commandes vectorielles pour tous les moteurs à courant alternatif.
On utilise les notations suivantes :
Les pertes sont généralement notées en minuscule :
Le schéma ci-dessous représente la transmission de la puissance à travers la machine :
On peut vérifier que
Par rapport au cas précédent, la puissance utile devient la puissance électrique fournie au réseau et la puissance mécanique est la puissance absorbée.
Les pertes sont les mêmes que pour le fonctionnement en moteur
Ces machines sont toujours utilisées en moteur et généralement limitées à des puissances de quelques kilowatts.
Lorsqu'il est alimenté en monophasé, le moteur asynchrone nécessite un système de démarrage. Différentes solutions permettent une différenciation de ces moteurs :